
 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 50

Enhancing System Performance Utilizing Cache Architecture
1Harminder Singh, 2Dr Sudesh Kumar, 3Harpreet Kaur

1,3SGHS Khalsa College, Panjokhra Sahib, Ambala
 2BRCMCET,Bahal

Abstract-Memory System is a crucial part of both the general

purpose systems and the embedded systems. The use of

embedded systems is increasing day by day in almost every field

of life. Embedded systems are goal specific systems that are

modeled for one or a few target applications. This requires the

full customization of the system architecture so as to meet some

power, performance and cost requirements. As the speed of the

processor is almost ten times faster than that of the memory

system, the memory system limits the processing power of the

processor making the whole system inefficient. To overcome this

speed mismatch between the processor and the main memory a

smaller and faster memory component is fabricated in between

these components. This smaller and faster memory component

is referred to as the cache. A cache System is intended to speed

up applications by providing means to manage cached data and

instructions of various dynamic natures. Caching is a popular

technique employed in a wide range of applications throughout

computer systems in an attempt to hide the full cost of accessing

some relatively slow device or connection by seeking a different

capacity/speed tradeoff. This paper focuses on the techniques

that can efficiently utilize the cache memory so as to improve

the performance of the whole system.

Keywords-Cache memory, optimization, cache utilization,

memory system

I. INTRODUCTION
While designing the general purpose computer systems we

have no prior knowledge about how the system would be

employed in the real situation. So these systems are drafted

for good average performance for a wide set of typical

applications. However the embedded systems are the

application oriented systems that are intended to solve some

specific problems, so the architecture of these systems can be

customized to meet the needs of a given application. Earlier

embedded systems uses a single core processor to process the

data. As an optimization attempt, to increase the processing

power of the embedded systems multi core processors are
fabricated, in which multiple CPU cores can process the data

simultaneously. The memory subsystem of any embedded

system also plays a crucial role in optimizing the working

efficiency of the system. Latest CPU’s uses various levels of

memory hierarchy that they can access directly. Generally the

memories fabricated closest to the CPU are the fastest

memories, but they are costly and have very low storing

capacity. Whereas the memories at a larger distance from the

CPU are cheaper, but they are slower and can store

comparatively larger data. The access time of the main

memory that is DRAM(Dynamic Random Access Memory)
is much larger than the CPU processing time. Thus the main

memory limits the processing power of the CPU. To

overcome this speed mismatch between the main memory

and the cpu several small but fast memories are employed

between them. The CPU uses cache memory to store the

frequently used instructions by the program thus improving

the overall speed of the system. These fast memories are
called the cache memories. Memory hierarchy implemented

with cache structures has received considerable attention

from researchers and system designers. Cache Memories

built into the CPU (also called the on chip memory) itself is

referred to as Level 1 (L1) cache. Some cache memories are

fabricated on a separate chip next to the CPU, these cache

memories are called Level 2 (L2) cache. Some CPU’s have

both Level-1 and Level-2 cache built in and uses a separate

chip as Level 3 (L3) cache. The L1 and L2 caches are

comparatively faster than the L3 cache. The figure shows

architecture of a typical multi core processor that contains on
chip L1 and L2 cache for each core and the off chip L3 cache

is shared among all the processor cores.

Fig 1.1- Organization of Cache memory in multi core processor systems

The main limitation of the cache memory is that it’s capacity

is much smaller than the main memory that it is backing up.

So all the program’s instructions or data can’t be kept inside

the cache memory .Some special techniques must be

employed that selects the data needed frequently in the

program and stores that data into the cache .The capacity of

various cache memories used in Intel I7 processor is shown

in the table below.

Thus optimizing the cache by choosing its various features

like cache size, levels, cache line etc plays very important

role in optimizing the overall embedded system.

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 51

II. CACHE OPTIMIZATION TECHNIQUES

Cache Memory Hierarchies

Size of the cache memories have a large impact on both off-

chip latency and on-chip latency. In order to reduce the cache
misses, cache capacity is partitioned into several levels. It is a

well-known fact that larger caches take longer time to access

where as smaller caches can be accessed in few CPU cycles.

A small cache usually called a level-1 cache is placed very

close to the CPU (on chip) . It ensures higher efficiency and

lower latency. This on chip cache can be further divided into

two different part. One part focuses on caching the data and

the second part is used to cache the program instruction thus

optimizing the performance of the system. These on chip

memories can be accessed commonly in one or two CPU

cycles. The size of these L1 cache memories is very small .

For intel i7 processer the size of the L1 cache memory is 64
Kb which are divided into two parts of 32 kb each for the

program data and program instructions as shown in the table

1.1. If the size of L1 cache is increased further the on chip

latency will also increase which is not desirable to solve this

problem a second level of cache memories Level-2 caches

are used. Intel I7 processor contains approximately 256 kb of

level-2 cache memory. In multi core processer environment

each core has its own private L1 and L2 cache memories. To

further optimize the efficiency of the system a third level of

cache memory is Level -3 is used which is shared among all

the processor cores. Intel I7 processor contains
approximately 6 MB of L3 cache which is shared by all the

four processor cores

Fig 2.1- Capacity and Latency of memory hierarchy

Working of Locality of Reference

Due to a very low capacity, the cache memories can cache

limited amount of data. When new data are loaded into cache

the old data needs to be replace. The caches can be efficiently

used if the cached data is reused in the near future before the

data gets replaced by new data. This is defined by the
principle of locality. Locality can be classified as temporal

locality and spatial locality. Temporal locality enhances

system performance. It conveys us whether memory

locations recently accessed in a program are likely to be used

again in the near future or not. A method that is called

repeatedly in a short period of time is assumed to have a high

temporal locality. The program can be slightly altered in

order to use the benefits provided by the cache memories as

shown below.

Here two algorithm of the same program are given, one with

low temporal locality and the other with the higher temporal

locality. Algorithm-1 does not use the cache architecture

efficiently because every time new instruction replaces the

old cached instruction which results in a lot of cache misses.

By slightly changing the algorithm we first read all the files

which uses the same read instruction cached in the cache

memory then read instruction is replaced with the generate

output instruction and then with the write output instruction.

This variant of Algorithm results in a very small number of

cache misses. Hence cache memory is efficiently used.

III. CACHE MAPPING ASPECTS

Inside the cache memory the data is stored in the cache lines.

Cache lines are used to store contiguous blocks of main

memory. If the data requested by the CPU is present in any

cache line then it is called a cache hit. In case of the cache

hit, the data is fetched from the cache rather than main

memory which saves several CPU cycles hence speed up the

program. In case if the requested data or instruction is not

found in the cache memory, the data needs to be searched in

higher levels of memory hierarchy this process is known as
cache miss. In case of cache miss the requested data is

fetched from the main memory and rather than just

processing the data it is also copied to one of the available

cache line in cache memory. If no cache line is available to

hold the data the old data in a cache line needs to be replaced

by the new requested data. Depending upon how the data

blocks are stored in the cache line there are three ways data

can be mapped in the cache system. These are direct

mapping, full associative mapping and set associative

mapping. In full associative mapping, when a request for a

particular data that needs to be fetched is made to the cache,

the address of that particular data is then compared with each
and every entry in the directory. If the requested data’s

address is found (a cache hit), the data is fetched from the

corresponding location in the cache and returned to the

processor for processing, On the other hand, if a cache miss

occurs the address is compared in higher levels of the

memory hierarchy. In a cache architecture with direct

mapping technique, lower order line address bits points to

the directory. Since more than one line addresses map into

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 52

the same location in the directory, the higher order line

address bits (these are called tag bits) needs to be compared

with the directory address to ensure a cache hit. If the

comparison is invalid, then a cache miss occurs. The request

address that is given to the cache system by the processor is
actually partitioned into several parts, each of this part has a

different aspect in accessing data. The working of the set

associative cache techniques is somewhat similar to the

direct-mapped cache. Some of the bits from the line address

helps to reach a particular cache directory. However, after

reaching any directory we have multiple choices: 2, 4, or

more complete line addresses are enclosed in the directory.

Each of these line addresses corresponds to a unique location

in a sub-cache. By collecting all these sub-caches we get the

total cache array[7]. In a set associative cache, all of these

sub-arrays can be accessed in parallel, along with the cache

directory. If any of the entries in the cache directory matches
the address requested by the processor, then there is a cache

hit, In this case the particular sub-cache array is fetched and

contents are transferred back to the processor.

Fig 3.1 - An overview of 8-way set associative cache

IV. IMPROVED TECHNIQUES FOR DATA

ACCESS

To improve the temporal locality of the data and effectively

utilizing the cache we can change the order in which the

nested loops in the program are executed. In case of loop the

successive iterations of the loop often uses the same data

word or the adjacent data words in the memory.

So by slight modification in the loop the cache hit rates can

be significantly increased. Consider two algorithms shown

below. Both of these algorithms does the exactly same

calculation but the order in which they access the array

elements are different. These different access ordering

increases the hit rate of cache because very less amount of

replacements will be needed in the second algorithm.

 Loop Interchange

Loop interchange is the data access optimization techniques

that can optimize the nested loops in the program by altering

the ordering in which the loops gets processed.

If the arrays are stored in the row- major order in the main

memory, then the Algorithm 2.1 will result in lot of cache

misses because this algorithm is processing the arrays in a

column- major order as shown in the figure 4.1. In this case

the cached data shown by the shaded area is not used by the

program hence these loops are not optimized.

Fig 4.1 Processing array in Colomn Order

 Fig 4.1 Processing array in Row Major Order

By interchanging the loop variables i and j as shown in Fig

4.2 the processing of the array can be performed in the row-

major order which will then take the benefit of cached data
thus decreasing the hit rate.

Blocking

A very important change in the algorithms is the involvement

of blocking data structures that can fit in the cache. By

organizing the data memory accesses, we can populate the

systems cache memory with a small part of the larger data

structure. After loading this small block in the memory the

idea is to maximize the use of this loaded block. By reusing

this data block available in the cache memory we can reduce

frequency of memory access. Blocking of data is an

optimization technique which can help in avoiding memory

bandwidth bottlenecks in a number of applications that use
large data structures [5]. The main idea behind blocking is to

first examine the inherent data in the application that how it

can be reused by ensuring that data remains in cache memory

during multiple requests. Blocking technique can be applied

one dimensional, two dimensional or three dimensional

spatial data structures. Some applications that uses the

iterative code can further take benefit from blocking during

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 53

multiple iterations (this is commonly known as temporal

blocking) to diminish bandwidth bottlenecks. Blocking can

be implemented by changing the program slightly. It involves

a combination of loop interchange and loop splitting. In the

source code of most of the applications, blocking techniques
is effectively accomplished by the programmer by

constructing the right source changes with some slight

parameterization of the block-factors that can speed up the

application. Consider a case of matrix multiplication, let two

matrices A and B are multiplied and the results are stored in

the third matrix. To calculate one element of matrix c

requires accessing an entire row of matrix a and an entire

column of matrix b. To calculate an entire column of matrix c

we need to access all the rows of matrix a, so matrix a is

accessed n times, once for each column of c. Likewise, every

column of matrix b must be read again for each element of

matrix c, so matrix b is read m times.

Fig 4.3 - Simple matrix multiplication

If matrix a and matrix b does not fit in the cache memory, the

already cached rows and columns are more likely to be

replaced by the new ones, so there may be a little reuse of

cache memory. As a result, this process will require fetching

of data in from main memory, n times for matrix a and m

times for matrix b.

Because the operations on matrices in Fig 4.3 are unordered

(not order dependent), this problem with numerous number

of cache misses can be fixed by considering the matrices in

smaller sub-blocks as shown in Fig 4.4. In blocking, a block
of matrix c can be calculated efficiently by taking the dot-

product of a row block of matrix a with a column-block of

matrix b. The dot-product of these matrices consists of

multiplication of series of sub-matrices. When three blocks of

the matrices, one from each matrix, all are cached in cache

memory simultaneously, the elements of those blocks need

not to be read from memory again and again.

Fig 4.4- Matrix multiplication using cache blocking technique

Loop Fusion- Merging Adjacent Loops

In order to improve run-time performance of the system and

reduce loop overhead, some adjacent loops can be combined

into one loop. This technique is called loop fusion. Loop

fusion or loop jamming is a technique that transforms some

loops in the program. This technique replaces multiple loops

with a single loop. This techniques is possible only when

two or more loops iterate over the same range of data and

does not reference each other's data. Loop fusion technique

works by increasing the number of code statements and

accessed arrays within a loop. Loop fusion is based upon
temporal locality[6]. It optimize the program by efficiently

implementing the data access by reducing the time interval

between the requesting of the same data, hence it increases

the chances of the data being retained in the cache and

increasing hit ratio frequency.

Table 4.2- Algorithms demonstrating loop fusion

Algorithm 4.3

Algorithm 4.4

 1) int A[n], B[n] ;

 2) for i=1 to n do

3) A[i] = A[i] +

3;

4) end for

5) for j=1 to n do

6) B[j] = B[j
]+4;

7) end for

1) int A[n], B[n] ;

2) for i=1 to n do

3) A[i] = A[i] + 3;

4) B[j] = B[j]+4;

5) end for

Although loop fusion helps in lowering the loop overhead, it

does not always ensure the improved run-time performance.

On some of the system architectures, two different loops

may actually perform better than one single loop. In these

cases, a single loop may be changed into two different loops,

which is called Loop fission.

V. CONCLUSION

There is a large speed mismatch between the CPU and the

main memory of the computer system. Thus the processing
speed of the CPU is limited by the speed of main memory.

To overcome this speed disparity cache memories are

incorporated in computer system architectures to speed up

the system. Caches are small but fast memories that are

fabricated very close to the processor. Caches speed up the

program execution by storing the recently used data from the

main memory. Various levels of caches are used to get even

better results. Some caches are shared among various cores

of the processor whereas some caches are private to each

processor core. Having cache fabricated in the system it is

still not necessary that the cache is properly utilized.
Therefore some techniques are discussed that must be used

while programming in order to speed up the execution of the

program by the CPU. In some cases by slightly changing the

loop variables in a nested loop cached data can be more

efficiently used and cache hit ratio can be improved. Further

by using blocking complex calculations like matrix

multiplication can be effectively performed by caching the

smaller block of the matrix in the memory and then reusing

that block for several iteration. At last loop fusion can reduce

the loop overhead by performing the calculations of two

adjacent loops within a single loop.

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 54

REFERENCES

[1] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler transformation

for high-performance computing. ACM Computing Surveys, 26:345-

420, December 1994.

[2] D.F. Bacon, et al. A Compiler framework for restricting data

declaration to enhance cache and TLB effectiveness. In CASCON 194,

pages 270-282, Toronto, Canada,1 994

[3] M.J Wolfe. Optimizing super compliers for super computers. The MIT

Press, Cambridge MA, 1989.

[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann Publishers, San Francisco,

California, USA, 2001

[5] Amandas (Intel), Compiler methodology for Intel MIC Architecture,

November 7,2013, https://software.intel.com/en-us/articles/cache-

blocking-techniques

[6] Compiler optimizations,

http://www.compileroptimizations.com/category/loop_fusion.htm

[7] Computer Organization and Architecture,

http://gyan.fragnel.ac.in/~surve/COA/Memory/Memory_Cache.html

[8] N. Ahmed, N. Mateev, and K. Pingali. Tiling ImperfectlyNested Loop

Nests. In Proc. of the ACM/IEEE Supercomputing Conference, Dallas,

Texas, USA, 2000

