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Abstract: The demand for images, video sequences and computer animations has increased drastically over the years. 

This has resulted in image and video compression becoming an important issue in reducing the cost of data storage and 

transmission. JPEG is currently the accepted industry standard for still image compression, but alternative methods are 

also being explored. Fractal Image Compression (FIC) is one of them. This scheme works encoding by partitioning an 

image into blocks and using Contractive Mapping to map range blocks to domains. The encoding step in fractal image 

compression has high computational complexity whereas, decoding step involves starting from all zeros image to achieve 

final image which is same as original image by applying self Transformations.  
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I. INTRODUCTION 

With the advance of the information age the need for mass 

information storage and fast communication links grows. 

Storing images in less memory leads to a direct reduction in 

storage cost and faster data transmissions. These facts 

justify the efforts, of private companies and universities, on 

new image compression algorithms. 

Images are stored on computers as collections of bits (a bit is a 

binary unit of information which can answer “yes” or “no” 

questions) representing pixels or points forming the picture 

elements. Since the human eye can process large amounts of 

information (some 8 million bits), many pixels are required to 

store moderate quality images. These bits provide the “yes” 

and “no” answers to the 8 million questions that determine the 

image. Most data contains some amount of redundancy, which 

can sometimes be removed for storage and replaced for 

recovery, but this redundancy does not lead to high 

compression ratios.  An  image  can  be  changed  in  many  

ways  that  are  either  not detectable by the human eye or do 

not contribute to the degradation of the image. 

The standard methods of image compression come in several 

varieties.  The current most popular method relies on 

eliminating high frequency components of the signal by 

storing only the low frequency components (Discrete Cosine 

Transform Algorithm). This method is used on JPEG (still 

images), MPEG (motion video images), H.261 (Video 

Telephony on ISDN lines), and H.263 (Video Telephony on 

PSTN lines) compression algorithms. 

Fractal Compression was first promoted by M.Barnsley, who 

founded a company based on  fractal  image  compression  

technology  but  who  has  not  released  details  of  his 

scheme. The first public scheme was due to E.Jacobs and 

R.Boss of the Naval Ocean Systems Center in San Diego 

who used regular partitioning and classification of curve 

segments in order to compress random fractal curves (such 

as political  boundaries) in two dimensions. A doctoral student 

of Barnsley’s, A. Jacquin, was the first to publish a similar 

fractal image compression scheme [2]. 

Fractal compression is a lossy image compression method 

using fractals to achieve high levels of compression. The 

method is best suited for photographs of natural scenes 

(trees, mountains, ferns, clouds). The fractal compression 

technique relies on the fact that in certain images, parts of the 

image resemble other parts of the same image. 

Fractal algorithms convert these parts, or more precisely, 

geometric shapes into mathematical data called "fractal codes" 

which are used to recreate the encoded image. Fractal 

compression differs from pixel-based compression schemes 

such as JPEG, GIF and MPEG since no pixels are saved. Once 

an image has been converted into fractal code its relationship to 

a specific resolution has been lost; it becomes resolution 

independent. The image can be recreated to fill any screen size 

without the introduction of image artifacts or loss of sharpness 

that occurs in pixel-based compression schemes. 

II. WHAT IS FRACTAL IMAGE 

COMPRESSION? 

Imagine a special type of photocopying machine that reduces 

the image to be copied by half and reproduces it three times 

on the copy (see Figure 2 ). What happens when we feed the 

output of this machine back as input? Figure 3  shows several 

iterations of this process on several input images. We can 

observe that all the copies seem to converge to the same 

final image, the one in 3(c). Since the copying machine 

reduces the input image, any initial image placed on the 

coping machine will be reduced to a point as we repeatedly  

run  the machine; in fact, it is only the position and the 

orientation of the copies that determines what the final image 

looks like. 

 
 
Figure 1: A copy machine that makes three reduced copies of the input 

image 
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The way the input image is transformed determines the 

final result when running the copy machine in a feedback 

loop. However we must constrain these transformations, 

with the limitation that the transformations must be 

contractive, that is, a given transformation applied to any two 

points in the input image must bring them closer in the 

copy. This technical condition is quite logical, since if 

points in the copy were spread out the final image would have 

to be of infinite size. Except for this condition the 

transformation can have any form. 

In practice, choosing transformations of the for 

                             (1) 

 is sufficient to generate interesting  transformations  called  

affine transformations  of the plane. Each can skew, stretch, 

rotate, scale and translate an input image. 

A common feature of these transformations that run in a 

loop back mode is that for a given  initial  image each image 

is formed from a transformed (and reduced) copies of itself, 

and hence it must have detail at every scale. That is, the 

images are fractals. This and more information about the 

various ways of generating such fractals can be found in 

books by Barnsley and Yuval Fisher [4]. 

 

          Initial copy                   First Copy          Second copy                Third Copy

Figure 2. The first three copies generated on the copying machine figure 2

Barnsley suggested that perhaps storing images as collections 

of transformations could lead to image compression. His 

argument went as follows: the image in Figure 3 looks 

complicated yet it is generated from only 4 affine 

transformations. 

Each transformation wi is defined by 6 numbers, ai, bi, ci, di, 

ei, and fi , see eq(1), which do not require much memory to 

store on a  computer  (4  transformations  x  6  numbers  / 

transformations x 32 bits /number = 768 bits). Storing the 

image as a collection of pixels, however required much more 

memory (at least 65,536 bits for the resolution shown in 

Figure 3).  So if we wish to store a picture of a fern, then we 

can do it by storing the numbers that define the affine 

transformations and simply generate the fern whenever we 

want to see it. Now suppose that we were given any arbitrary 

image, say a face. If a small number of affine 

transformations could generate that face, then it too could 

be stored compactly. The trick is finding those numbers. 

 
Figure 3: Fractal Fern 

III. CONTRACTIVE TRANSFORMATIONS 

A transformation w is said to be contractive if for any two 

points P1, P2, the distance 

d(t(p1),t(p2)) < sd(p1,p2), 

for some s  < 1, where d = distance. This formula says the 

application  of  a  contractive map always brings points closer 

together (by some factor less than 1). 

IV. CONTRACTIVE MAPPING FIXED POINT 

THEOREM 

This theorem says something that is intuitively obvious: if a 

transformation is contractive then when applied repeatedly 

starting with any initial point, we converge to a unique fixed 

point. 

If X is a complete metric space and W: XX  is contractive, 

then W has a unique fixed point |W|. 

This simple looking theorem tells us how we can expect a 

collection of transformations to define an image. 

V. ITERATED FUNCTION SYSTEMS (IFS) 

IFS is the term originally devised by Michael Barnsley [2] for 

a collection of contraction mappings over a complete metric 

space, typically compact subsets of R
n
. Systems of contraction 

mappings had been considered previously by a number 

authors for various purposes. The Barnsley showed how such 

systems of mappings with associated probabilities could be 

used to construct fractal sets and measures: the former from a 

geometric measure theory setting and the latter from a 

probabilistic setting. 
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Just as important, however, was the fact that the Barnsley 

paper was the first to suggest that IFS could be used to 

approximate natural objects. This was the seed of the inverse 

problem of fractal approximation: Given a "target" set, S, 

for example, a leaf, can we find an IFS with attractor A that 

approximates S to a reasonable degree.  

In a subsequent paper, Barnsley showed how the inverse 

problem of fractal approximation was could be reformulated 

by means of the infamous "Collage Theorem": instead of 

trying to find IFS whose attractor A would match the target S 

(a very tedious and difficult problem), one can look for IFS 

that maps A as close as possible to itself. 

VI. PIFS FRACTAL IMAGE ENCODING 

The generic type of PIFS fractal encoding for gray images is 

introduced [3], which follows the next steps. 

1. The gray image to be encoded is partitioned into non-

overlapping range blocks denoted by Ri of size N X N, and is 

partitioned into overlapping domain blocks denoted by Di of 

size 2N X 2N. Ri is an encoding cell. All domain blocks form 

the domain pool SD. 

2. According to the least-square error criteria, Ri searches for 

its best matching block in SD. Namely, Di approximates to Ri 

through contraction affine transform ωi - ωi is composed of 

three transformations. The first is geometric scaling mapping 

making Ri and Di have same space size. The second is 

reflection or rotation transformations. Saupe [39] indicates 

that without the second transformations, better quality of the 

reconstructed image can also be obtained by reducing the 

domain blocks’ partitioning step, and the compression ratio is 

improved due to never saving the transformations information. 

The third is gray level transform G defined as follows: 

Rˆi = G (Di) = si . Di + σi 

Where si is scaling coefficient and σi is luminance offset. Δ is 

the least-square error between Rˆi and Ri . L is the matching 

error threshold. If Δ < L, this domain block is marked as a 

matching block of Ri. Then we select another domain block in 

SD and do step 2 repeatedly, until all domain blocks in SD 

have been compared with Ri. The domain block with 

minimum Δ is regarded as the best matching block of Ri. If the 

matching block doesn’t exist, Ri will be divided into 4 equal 

sized sub-images, and they are encoded respectively [32].  

3. Save si, σi and the relative positions rx , ry between Ri and 

its best matching block as encoding information.  

Repeat the above step to encode other range blocks. 

The image compression scheme describe later can be 

said to be fractal in several senses. The scheme will encode 

an image as a collection of transforms that are very similar to 

the copy machine metaphor. Just as the fern has detail at every 

scale, so does the image reconstructed from the transforms. 

The decoded image has no natural size, it can be decoded at 

any size. The extra detail needed for decoding at larger 

sizes is generated automatically by the encoding transforms. 

One may wonder if this detail is “real”; we could decode an 

image of a person increasing the size, with every iteration, and 

eventually see skin cells or perhaps atoms. The answer is, of 

course, no. 

 
Fig 5: Fractal Image Encoding Block diagram 

VII.  WHY THE NAME “FRACTAL” 

The detail is not at all related to the actual detail present 

when the image was digitized; it is just the product  of  the  

encoding  transforms  which  originally  only  encoded  the  

large-scale features. However, in some cases the detail is 

realistic at low magnifications, and this can be useful in 

Security and Medical Imaging applications.  

VIII. HOW MUCH COMPRESSION CAN FRACTAL 

ACHIEVE? 

The compression ratio for the fractal scheme is hard to 

measure since the image can be decoded at any scale. For 

example, the decoded image in Figure 4 is decoded at 4 

times its original size, so the full decoded image contains 16 

times as many pixels and hence this compression ratio is 

91.2:1. This many seem like cheating, but since the 4-

times-later image has detail at every scale, it really is not. 

ADVANTAGES 

 High compression ratio 

 High reconstruction quality 
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 Resolution independent for decoded image 

 Magnify without losing details 

DISADVANTAGES 

 High computation load 

 Long coding & decoding time 

 Iterative decoding 

 Difficult for hardware design 

APPLICATIONS:  

This type of compression can be applied in Medical 

Imaging, where doctors need to focus on image details, and in 

Surveillance Systems, when trying to get a clear picture of the 

intruder or the cause of the alarm. This is a clear advantage 

over the Discrete Cosine Transform Algorithms such as that 

used in JPEG or MPEG. 

IX. CONCLUSION 

Although fractal image coding is a relatively new 

technique, it has acquired a performance comparable 

with other methods such as JPEG or vector 

quantization. Furthermore, the field of research is far 

from being exhausted since there are many direc tions 

that have not yet been fully investigated (e.g., the use 

of non-affine transformations, the combination of 

fractal coding with other techniques and extensions to 

volume data and video frames). The main advantages of 

the fractal compression scheme are its ability to  

provide high compression ratios for a large class of 

images, the speed of its decoding process and its multi -

resolution properties. However, to arrive at an optimal 

algorithm which can outperform traditional techniques, 

more attention needs to be devoted to the encoding 

process which still suffers from long computation 

times. 
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