
Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June
2016, pp. 62-64

© 2016 IJRRA All Rights Reserved page - 62-

Technique for Conversion of

Regular Expression to and from Finite

Automata

Indu, Jyoti

Department of Computer Science, Gateway Institute of Engineering & Technology (GIET),
Deenbandhu Chhotu Ram University of Science & Technology (DCRUST), Sonepat

Abstract— The theory of computation is the branch of computer science and mathematics that deals with whether

and how efficiently problems can be solved on a model of computation using an algorithm. In theoretical computer

science, automata theory is the study of abstract machines and the computational problems that can be solved using

these abstract machines. These abstract machines are called automata. Finite automata can be deterministic and non-

deterministic. Every regular language that is described by non-deterministic finite automata can also be described by

deterministic finite automata. Regular expressions [6] also denote regular languages, which consists of strings of

particular type. The patterns of strings described by regular expression are exactly same as what can be described by

finite automata. It means every formal language defined by any finite automata is also defined by a regular

expression.

Keywords— Finite Automaton, Regular Grammar, Regular Language, Kleen Closure

I. INTRODUCTION

Regular expressions are used to represent certain set of string

in algebraic manner. Regular expressions are widely used in

the field of compiler design, text editor, search for an email-

address, grep filter of unix, train track switches, pattern

matching ,context switching and in many areas of computer

science. The demand of converting regular expression into

finite automata and vice versa motivates research into some

alternative so that time taken for above is minimized.

For conversion of deterministic finite automata to regular

expression, several techniques like Transitive closure

method, Brzozowski Algebraic method and state elimination

method have been proposed. None of the above specified

technique is able to find smallest regular expression. Our

purpose is to find the smallest regular expression equivalent

to given deterministic finite automata. State elimination

approach is the most widely used and efficient approach for

converting deterministic finite automata to regular

expression.

The presented paper investigates and compares different

techniques used for converting deterministic finite automata

to regular expression. Brief comparisons amongst different

techniques are presented in this review paper.

II. BASIC DEFINITIONS

[A] Deterministic finite automaton (DFA)

Deterministic finite automaton (DFA) is a finite state

machine accepting finite strings of symbols. For each state,

there is a transition arrow leading out to a next state for each

symbol.

Deterministic finite automata (DFA) can be defined by 5-

tuples (Q, Σ, δ, q0, F), where

Q is a finite set of states

Σ is a finite set of symbols

δ is the transition function, that is, δ: Q × Σ → Q.

q0 is the start state

F is a set of states of Q (i.e. F⊆Q) called accept states.

Transition functions can also be represented by transition

table as shown in table 1.

Table 1: Transition Table representing transition

function of DFA

A finite automata is represented by ({0, 1, 2}, {a}, δ, {0},

{2}) where, δ is shown in the table above.

Transition function can also be represented by transition

diagram as shown below in figure 1.

Figure 1: Deterministic finite automata corresponding to

table 1.

[B] Non-deterministic Finite Automata

A Non-deterministic finite automata (NFA) is same as DFA

except the transition function. Transition function in NFA is

defined as: Q × Σ → 2Q. A Non-deterministic finite

automaton (NFA) [9] is a finite state machine where for each

pair of state and input symbol there may be more than one

next state.

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June
2016, pp. 62-64

© 2016 IJRRA All Rights Reserved page - 63-

Following figure 2 shows non-deterministic finite automata

accepting all the strings terminating with 01 and in which

state A has two transitions for same input symbol 0.

Figure 2: An example of non-deterministic finite automata.

[C] Regular Expression

A regular expression (RE) is a pattern that describes some set

of strings. Regular expression over a language can be defined

as:

1) Regular expression for each alphabet will be represented

by itself. The empty string (ϵ) and null language (ϕ) are

regular expression denoting the language {ϵ} and {ϕ}

respectively.

2) If E and F are regular expressions denoting the languages

L(E) and L(F) respectively, then following rules can be

applied recursively.

a. Union of E and F will be denoted by regular

expression E+F and representing language L(E) U L(F).

b. Concatenation of E and F denoted by EF and

representing language L(E*F) = L(E) * L(F).

c. Kleene closure will be denoted by E* and represent

language (L(E))*.

Any regular expression can be formed using 1-2 rules only.

III. CONVERSIONS BETWEEN REGULAR EXPRESSION &

AUTOMATA

This section describes different techniques used for

converting deterministic finite automata to regular expression

and vice versa.

[A] Conversion of DFA to RE

Kleene proves that every RE has equivalent DFA and vice

versa. On the basis of this theoretical result, it is clear that

DFA can be converted into RE and vice versa using some

algorithms or techniques. For converting RE to DFA, first we

convert RE to NFA(Thomson Construction) and then NFA is

converted into DFA(Subset construction).For conversion of

DFA to regular expression, following methods have been

introduced.

 ▪ Transitive closure method

 ▪ Brzozowski Algebraic method

 ▪ State elimination method

[A1] Transitive Closure Method

Kleene's transitive closure method [2, 12] defines regular

expressions and proves that there is equivalent RE

corresponding to a DFA. Transitive closure is the first

mathematical technique, for converting DFAs to regular

expressions. It is based on the dynamic programming

technique. In this method we use R
k
ij which denotes set of all

the strings in Σ* that take the DFA from the state qi to qj

without entering or leaving any state higher than qk. There

are finite sets of R
k
ij so that each of them is generated by a

simple regular expression that lists out all the strings.

Consider the DFA given in figure 3 and applying transitive

closure method on it.

Figure 3: DFA for the language having odd number of 0‟s

[A2] Brzozwski Algebraic Method

Brzozowski method [10, 22] is a unique approach for

converting deterministic finite automata to regular

expressions. In this approach first characteristic equations for

each state are created which represent regular expression for

that state. Regular expression equivalent to deterministic

finite automata is obtained after solving the equation of Rs

(regular expression associated with starting state qs).

Consider the DFA in the following figure 4:

Figure 4: DFA for strings with an odd no of 1‟s.

Characteristics equations are as follow:

A = 0A + 1B

B = 1A + 0B + ϵ

Solving these equations by Arden‟s theorem

B = 1A + 0B + ϵ= 0B + (1A + ϵ)=0*(1A + ϵ)

B= 0*(1A) + 0*(ϵ) = 01*A + 0*

A = 0A + 1B= 0A + 1(0*1A + 0*) =

 0A + 10*1A + 10*

A= (0 + 10*1)*(10*) (Using Arden‟s rule)

[B] Conversion of RE to FA

It turns out that every Regular Expression has an equivalent

NFA and vice versa. There are multiple ways to translate RE

into equivalent NFA‟s but there are two main and most

popular approaches. The first approach and the one that will

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June
2016, pp. 62-64

© 2016 IJRRA All Rights Reserved page - 64-

be used during this project is the Thompson algorithm and

the other one is McNaughton and Yamada‟s algorithm.

[A1] Thompson’s algorithm

Thompson algorithm was first described by Thompson in his

CACM paper in 1968. Thompson‟s algorithm parse the input

string (RE) using the bottom-up method, and construct the

equivalent NFA. The final NFA is built from partial NFA‟s,

it means that the RE is divided in several subexpressions, in

our case every regular expression is shown by a common tree,

and every subexpression is a subtree in the main common

tree. Based on the operator the subtree is constructed

differently which results on a different partial NFA

construction. For example the NFA for matching a single

character look like:

Figure 5: Automaton that represent a single character „a‟ (a)

The concatenation is constructed by connecting the final

arrow of first expression to the first node of second

expression:

Figure 6: Automaton that represents the concatenation of

two characters, „a‟ & „b‟ (ab)

The alternation of a|b is constructed by adding a new state

with a choice of first expression and another choice to second

expression:

Figure 7: Automaton that represents the union of two

characters, „a‟ and „b‟ (a|b)

The loops as a* or a+ are almost similar, and “a+” can be

written as “aa*”, so the NFA graph looks like:

 Figure 8: Automat representing a*

[B2] McNaughton and Yamada Algorithm

The idea of the McNaughton and Yamada algorithm is that it

makes diagrams for subexpressions in a recursive way and

then puts them together. According to Storer and Chang the

McNaughton and Yamada‟s NFA has a distinct state for

every character in RE except the initial state. We can say that

McNaughton and Yamada‟s automaton can also be viewed as

a NFA transformed from Thompson‟s NFA.

The McNaughton and Yamada‟s algorithm in the initial

phase creates disconnected initial and accepted state:

Figure 9: Automaton representing Empty set

IV. CONCLUSION

This paper work provides an insight into the various

approaches used for conversion of deterministic finite

automata to regular expression and vice versa. Comparisons

between different techniques for conversion of DFA to RE

are carried out. Researching this project has shown that the

conversion of regular expressions to DFA and back again are

processes that are well understood and are implementable

without any great difficulty. The most time-consuming part

of the project was coding the parser for the regular

expression. This is because while regular expressions define

regular languages, they themselves are not regular and must

be described by context-free grammars.

REFERENCES

[1] Alfred V. Aho, “Constructing a Regular Expression

from a DFA”, Lecture notes in Computer Science

Theory, September 27, 2010, Available at

http://www.cs.columbia.edu/~aho/cs3261/lectures.

[2] Ding-Shu Du and Ker-I Ko, “Problem Solving in

Automata, Languages, and Complexity”, John

Wiley & Sons, New York, NY, 2001.

[3] Gelade, W., Neven, F., “Succinctness of the

complement and intersection of regular

expressions”, Symposium on Theoretical Aspects of

Computer Science. Dagstuhl Seminar Proceedings,

vol. 08001, pages 325–336. IBFI (2008).

[4] Janusz A. Brzozowski, “Derivatives of regular

expressions”, J. ACM,11(4) pages 481-494, 1964.

[5] J. J. Morais, N. Moreira, and R. Reis, “Acyclic

automata with easy-to-find short regular

expressions”, In 10th Conference on

Implementation and Application of Automata,

volume 3845 of LNCS, pages 349–350, France,

June 2005. Springer.

[6] K. Ellul, B. Krawetz, J. Shallit, and M.Wang,

“Regular expressions: New results and open

problems”, Journal of Automata, Languages and

Combinatorics, 10(4):pages 407– 437, 2005.

[7] Larkin, H., “Object oriented regular expressions”,

8th IEEE International Conference on Computer

and Information Technology , vol., no., pages 491-

496,8-11 July,2008

[8] Peter Linz, Formal Languages and Automata

(Fourth Edition), Jones and Bartlett Publishers,

2006

[9] Michael Sipser, Introduction to the Theory of

Computation, Thomson Course Technology, 2006

