
Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 70-

A Comparison of Different Algorithms for

Approximate String Matching

Indu, Prerna

Department of Computer Science, Gateway Institute of Engineering & Technology (GIET), Deenbandhu
Chhotu Ram University of Science & Technology (DCRUST), Sonepat

Abstract— In computer science, approximate string matching is the technique of finding strings that match a pattern

approximately (rather than exactly). Most often when we need to match a pattern exact matching is not possible, due to

insufficient data, broken data, or other such reasons. So we try to find a close match instead of an exact match. And for

this we need to find the distance between two strings. We have different approaches for the same such as edit distance in

the form of Hamming distance, Levenshstien distance, Dameru-Levenshstein distance, Jaro-Winkler distance and Longest

Common Subsequence (LCS). Different algorithms have been made for these different approaches, and we will try to

analyze some of these algorithms.

Keywords— Edit Distance, Longest Common Subsequence, Pattern Matching , Space and Time Complexity.

I. INTRODUCTION

Approximate string matching is used is finding similar matches

in search engines like google when the user may want to see

similar items, or maybe sometimes the user does not enter the

exact words occurring in the content on the item to be searched,

and this is done through approximate string matching. It is used

for the following purposes:

1) Search engines

2) Database searching:

3) Spell Checking

4) Signal processing

5) File comparison

6) Screen redisplay

II. APPROACHES

Two primary methods used for approximate string matching

are Edit distance and longest common subsequence.

A. Edit Distance

The closeness of a match is measured in terms of the number of

primitive operations necessary to convert the string into an

exact match. This number is called the edit distance between

the string and the pattern. The usual primitive operations are:

insertion: cot → coat

deletion: coat → cot

substitution: coat → cost

There are several different ways to define an edit distance,

depending on which edit operations are allowed: replace, delete,

insert, transpose, and so on. There are algorithms to calculate

its value under various definitions: Levenshtein distance &

Hamming distance

A.1 Levenshtein distance

The Levenshstein distance is the number of insert, delete and

substitution operations require to transform one string into

another. Levenshstein distance is defined as:

For example, the Levenshtein distance between "kitten" and

"sitting" is 3, since the following three edits change one into

the other, and there is no way to do it with fewer than three

edits:

kitten → sitten (substitution of "s" for "k")

sitten → sittin (substitution of "i" for "e")

sittin → sitting (insertion of "g" at the end).

The matrix used for the comparison of two strings is shown

below:

Finding the Levenshstein distance between two given strings

―meilenstein‖ and ―levenshstein‖ through dynamic

programming. The Levenshstien distance comes out to be 4, as

given in the bottom right corner of the matrix. The complexity

of Levenshstien distance is O(mn)

A.2 Hamming distance

In information theory, the Hamming distance between two

strings of equal length is the number of positions at which the

corresponding symbols are different. In another way, it

measures the minimum number of substitutions required to

change one string into the other, or the minimum number of

errors that could have transformed one string into the other.

Examples:

The Hamming distance between:

"toned" and "roses" is 3.

1011101 and 1001001 is 2.

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 71-

2173896 and 2233796 is 3.

Special properties:

For a fixed length n, the Hamming distance is a metric on the

vector space of the words of length n, as it obviously fulfils

the conditions of non-negativity, identity of indiscernible and

symmetry, and it can be shown easily by complete induction

that it satisfies the triangle inequality as well. The Hamming

distance between two words a and b can also be seen as the

Hamming weight of a−b for an appropriate choice of the −

operator.

For binary strings a and b the Hamming distance is equal to the

number of ones (population count) in a XOR b. The metric

space of length-n binary strings, with the Hamming distance, is

known as the Hamming cube; it is equivalent as a metric space

to the set of distances between vertices in a hypercube graph.

One can also view a binary string of length n as a vector in by

treating each symbol in the string as a real coordinate; with this

embedding, the strings form the vertices of an n-dimensional

hypercube, and the Hamming distance of the strings is

equivalent to the Manhattan distance between the vertices.

The complexity for hamming distance is O(n)

A.3 Comparisons:

1. The complexity of Levenshtein distance is O(mn)

 The complexity for hamming distance is O(n)

2. The Levenshtein distance works for unequal string.

 The Hamming distance works for equal string.

3. The no. of operations used in Levenshtein distance are 3

 (Insertion, Deletion and Substitution)

 The no. of operations used in Hamming distance is 1

 (Substitution)

B. Longest Common Subsequence (LCS)

The longest common subsequence is a classical problem which

is solved by using the dynamic programming approach. The

LCS problem has an optimal substructure: the problem can be

broken down into smaller, simple "subproblems", which can be

broken down into yet simpler subproblems, and so on, until,

finally, the solution becomes trivial. The LCS problem also has

overlapping subproblems: the solution to a higher subproblem

depends on the solutions to several of the lower subproblems.

Problems with these two properties—optimal substructure and

overlapping subproblems—can be approached by a problem-

solving technique called dynamic programming, in which the

solution is built up starting with the simplest subproblems. The

procedure requires memoization—saving the solutions to one

level of subproblem in a table (analogous to writing them to a

memo, hence the name) so that the solutions are available to

the next level of subproblems.

B.1 Wagner-Fischer Algorithm

Wagner-Fischer developed in 1974 the one of first algorithms

which can compute the LCS of two strings. Originally the

algorithm was intended to compute an edit distance between

two strings called the problem of string to string correction (the

usage of the dynamic programming to solve this kind of

problems was invented by Richard Bellman in 1953). This

means the number of remove, replace, and insert operations

needed to change the string into another.

The disadvantage of the Wagner-Fischer algorithm is the equal

time for all types of inputs no matter how similar inputs are.

This is impractical when we have some expectation about a

structure of input strings or about the similarity (input strings

can be similar at 99%). More complicated algorithms have

been developed since the straightforward dynamic

programming and we will investigate principles in next

sections, however algorithms based on the Wagner-Fischer

have the worst case time complexity O(mn) even if the average

time complexity is better.

The dynamic programming matrix

The above example shows two strings ―GCCCTAGCG‖ and

―GCGCAATG‖ for which the dynamic programming matrix is

computed and the length of LCS comes out to be 5.

B.2 Hirschberg Algorithms

Hirschberg presented in 1977 an algorithm for computing the

LCS using the dynamic programming and a divide and conquer

paradigm, runs in O(mn) time and O(m + n) space Using the

dynamic programming matrix the time complexity is

proportional to the product of the lengths of strings. Previously

Hirschberg presented a modification which uses only linear

space O(m + n). However, by computing the table in the linear

space we lose the ability to backtrack the longest common

subsequence, because only the last row is stored in the memory.

To obtain the LCS sequence and keep the linear space

complexity, Hirschberg proposed a divide and conquer

technique for the dynamic programming table. To be able to

use the C&D technique, we need to calculate where the optimal

LCS path is crossing the first half of the table (coordinates of

that pair). Lets assume that we have two strings x and y, where

the length of strings are equal without loss of generality. Create

substrings x1 = x1..n, y1 = y1..m/2, x2 = xn..1, y2 = ym..m /2, where

the length |x1| = |x2| and |y1| = |y2|. y1 is a prefix of y of the

length m/2. y2 is a reversed suffix of y of the length m/2 . Then

calculate the longest common subsequence for x1 and y1, and

the longest common subsequence of reversed strings x2 and y2.

Formally LCS(x1..n, y1..m/2) and LCS(xn..1, ym..m/2).

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 72-

Table 1 and Table 2 shows the computed LCS for that strings

and Table 3 sums values of last rows. The first highest value in

the row, the value of 8 in Table 3 denotes the middle of the

LCS sequence.

Table 1: The dynamic programming table for ‖acebda‖

and ‖acbdeacbed‖

Table 2: The dynamic programming table for ‖debabb‖

and ‖debcaedbca‖

Table 3: Sum of last rows of Tables 1.2 and reversed 1.3

B.3 Hunt-Szymanski Algorithm

The Hunt-Szymanski algorithm solves the LCS problem in O

((r + n) log(n)) time and in O(r + n) space, where r denotes the

number of match points. When the number of match points is

small, the algorithm is very efficient.

The algorithm is a representant of row-by-row paradigm

presented previously. It tries to optimize the number of

comparison by remembering where a contour line crosses the X

axis vertically. Hunt-Szymanski developed an array called the

THRESHOLD where stores indices of contours crossing the

axis and speed up the computation by decreasing the number of

cell comparisons.

Lets first discover how the THRESHOLD array is being

computed and then how the Hunt-Szymanski algorithm works.

The THRESHOLD array (Figure 2, symbol ―-‖ denotes

undefined value) has the length of the first string. All values are

initialized to |n|+1 that is undefined. After processing a row of

the dynamic programming table, the array contains indices

where contour lines are crossing the X axis. When a new

contour is found on the current row. The rank of the pair is

computed and is also the value of the cell of the table.

Afterwards we only find the index in the THRESHOLD array

which satisfies the condition array[i - 1] < k ≤ array[i + 1] by

using the binary search (this step corresponds to moving the

contour line to the left). The last step is to update the array and

move to next pairs. The modified algorithm will run in O(n
3

log(n)) that is much worse than the simple Wagner-Fischer

algorithm

A simple improvement proposed by Hunt-Szymanski can be

made. Sort input strings (Figure 3) alphabetically in the

decreasing order and remember original indices of symbols in

the string. Create an array (Figure 1) of the linked list of the

length of the second string. And for each symbol from the first

string precompute all pairs and put indices of equal symbols

from the second string in the decreasing order in the linked list

(for example, the second line ‖c‖ in Figure 1 denotes that only

symbols at 6, 5, 2 equal to ‖c‖). This structure is called

MATCHLIST and decrease the number of comparison because

we are advancing only over symbols which match on the

current line.

The MATCHLIST can be created in O(n log(n)) by using for

example the quick sort.

Figure 1: The Hunt-Szymanski MATCHLIST array for

strings ‖cbacbaaba‖ & ‖abcdbb‖

Figure 2: The Hunt-Szymanski THRESHOLD array for

strings ‖cbacbaaba‖ & ‖abcdbb‖

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 73-

Figure 3: Sorted strings ‖cbacbaaba‖ and ‖abcdbb‖

B.4 Kuo-Cross Algorithm

The construction of the THRESHOLD array is not optimal in

terms of unnecessary updates. Kuo-Cross presented a

modification of the original algorithm, where a matchlist is

sorted in the increasing order and matches are processed left to

right. The different direction avoids unnecessary updates

(Figure 4 & 5) to the array and a value of the array is rewritten

only once (for the worst case scenario for the Hunt-Szymanski

algorithm, it is the number of elements in the matchlist for a

symbol).

Time and space complexity The algorithm avoids unnecessary

updates to the THRESH-OLD array and runs in O(σ + n(r +

log(n))) compared to the original Hunt-Szymanski O((r + n)

log(n)). The algorithm uses O(r + n) as much memory as the

Hunt-Szymanski algorithm.

Figure 4: The Kuo-Cross MATCHLIST array for

strings ‖cbacbaaba‖ and ‖abcdbb‖

Figure 5: The number of rewrites for the HS THRESHOLD

array (strings ‖cbacbaaba‖ and ‖abcdbb‖)

B.5 Myers-Miller Algorithm

It is a diagonalwise algorithm for two strings with the linear

space complexity. The algorithm solves the LCS and the SES

problem in O(n(m-r)), where m and n denote lengths of input

strings and r the total number of ordered pairs. The only

structure the algorithm uses is the linear array O(m + n) of

temporary x values.

To understand how the algorithm works, lets first define an edit

graph. The edit graph is a graph corresponding to the dynamic

programming table. The difference is that cells are replaces by

vertices and three types of edges. Diagonal edges represent

cases where symbols at given positions are equal. Horizontal

and vertical edges where symbols are different and a remove or

an insert instruction is required. Lets introduce the cost of the

edge; horizontal and vertical edges have the cost of one and

diagonal edges the cost of zero. All paths (traces) from [0, 0] to

[m, n] with the same cost are isomorphic. When two paths are

isomorphic then there is no difference which path is chosen.

Furthermore, some cells are not needed to be computed. Look

at Figure 6, the cell [3,5 = e,a] do not need to be computed

because from the upper cell the optimal path is connected by

either a horizontal or a vertical edge.

In contrast with the row by row or the contour to contour

approach, the algorithm advances based on calculating the

number of delete instructions (the Levenshtein distance). The

advancing is greedy because discards paths corresponding to

common subsequences with a large Levenshtein distance.

These paths cannot form the longest common subsequence

since other paths with a smaller distance exist.

Figure 6: Cells filled by the Myers-Miller algorithm for

strings ‖acebdabbabed‖ & ‖acbdeacbed‖

III. COMPARISONS OF EXISTING LCS ALGORITHMS

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 74-

Table: List of existing LCS algorithms for two strings

IV. CONCLUSIONS

We may say that edit distance and LCS are dual of each other

as edit distance gives us the number of operations required to

transform one string into another, whereas LCS gives us the

common subsequence in two strings. LCS is a special case of

edit distance as by allowing only insertions and deletions at

cost 1 we can compute the LCS. If we consider two strings of

length m and n, with m<n, then we can form a relation between

edit distance ed and lcs as n-lcs ≤ ed ≤ n+m – 2lcs, and if n=m

then we can say that n-lcs ≤ ed ≤ 2(n-lcs).

One type of edit distance is the Hamming distance , which

gives us a linear time but it does not give us optimal results
for σ>2. Even for σ=2 it would give us near optimal results and

in the worst case it would give way below optimal results. So

we rule out Hamming distance for our problem.

Then we come to Myers’ differential algorithm, which has

complexity in terms of D, the edit distance. For our problem of

approximate string matching we consider m<<n so we would

get the edit distance as ed ≥ n-m, and since m<<n, we can write

ed ≥ n. So our complexity becomes O((n+m)*n) = O(n
2
 + nm)

= O(n
2
) which is asymptotically greater than O(mn) for

classical approach to LCS or edit distance. So Myers’

algorithm is not well suited to our problem. It is more suited for

DNA comparisons where D is very small as compared to

lengths of the strings, and the lengths of the two strings are

approximately equal. Also note that the worst case of Myers’

algorithm corresponds to the best case of our algorithm, and its

best case corresponds to the worst case of our algorithm as it is

based on edit disatnce and our algorithm is based on the

number of matches, which have an approximately inverse

square relationship.

And lastly we come to Masek and Paterson algorithm. It has

the best time for worst case among all algorithms. However, it

has some limitattions as it works for finite alphabets only, and

costs of edit operations are integral multiples of a single

positive real number. So it is not a practical algorithm.

V. FUTURE SCOPE

In this section we present new ideas and further improvements

in the field of computing longest common subsequence.

1. What to do next?

Indu et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 2, June 2016,
pp. 70-75

© 2016 IJRRA All Rights Reserved page - 75-

Even the field of the longest common subsequence has been

intensively studied over past fifty years, there is still a lot to do.

We will consider only the LCS problem, not the constrained

longest common subsequence and other problems.

2. Reduce the overhead factor of the finite automata

approach Finite automata are able to explore fewer states than

other algorithms and the experiments have confirmed it.

Because no algorithm for more strings is developed, finite

automata remain the best choice. For two strings, WMMM and

Kuo-Cross are said to be fastest known. Problem is in the large

overhead factor of a lookup table, a queue and other parts.

3. Gene LCS for more strings String alignment algorithms

have not been covered in the work, but the longest common

subsequence problem has a huge potential in this area. FASTA

and BLAST algorithms and its modifications are used for

genetic, but are only approximate not exact. Developing an

algorithm for comparing millions of DNA sequences in real

time would revolutionize genetic engineering.

4. Memory management and cache optimization As the

length of strings grows, the memory exceeds the capacity of a

computer and swapping plus page faults slow down the system.

With a little effort a strategy of computing could be changed to

minimize page faults. But this should be the last chance to

improve the performance of implemented algorithms. More

effective would be to think about a different algorithm with the

lower time complexity suitable for average input strings.

5. Algorithms for more strings We have presented some

algorithms which work for two and more strings. There are

algorithms developed for two strings; are fast and do not

require a large amount of the memory space. Almost all of

them run in the linear time proportional to the sum of lengths of

strings. The question is, are paradigms extendable to more

dimensions for more strings? The general problem is in

mapping of multi dimensional space to linear memory block.

6. Parallel algorithms Since 1990s the field of parallel

algorithms of the LCS has been extensively studied. Parallel

algorithms have been completely omitted in the work. We only

refer readers to articles discussing parallel modifications of

algorithms.

7. Algorithms for compressed strings Even if the algorithm is

efficient, it still could not be enough to meet low demands on

the memory usage. Consider we have a large set of input

strings of billion symbols (for example a set of DNA

sequences), it will be impractical to have all inputs in the main

memory. A group of authors from Tohoku University(Japan)

developed algorithms for computing the longest common

subsequence of two given SLP(straight line programs)-

compressed strings in O(n
4
 log(n)) time with O(n

3
) space, and

in O(n
4
) time with O(n

2
) space, respectively, where n denotes

the size of the input SLP-compressed strings. Some algorithms

which are able to compute the LCS of run-length-encoded

strings have been presented recently, but no algorithm for

widely used compression algorithms (for example LZW or

DCA) exists and remains for further research.

REFERENCES

[1] Efficient Algorithms for Finding a Longest Common

Increasing Subsequence: Wun-Tat Chan, Yong Zhang,

Stanley P.Y. Fung, Deshi Ye, and Hong Zhu X. Deng and

D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 665–674,

2005.

[2] J. W. Hunt and T. G. Szymanski. A fast algorithm for

computing longest common subsequences Commun. ACM

20(5), 350–353 (1977)

[3] Wagner, R.A., Fischer, M.J.: The string-to-string

correction problem J. ACM 21(1), 168–173 (1974)

[4] Masek, W.J., Paterson, M.: A faster algorithm computing

string edit distances J. Comput. Syst. Sci., 20(1):18–31,

1980.

[5] Myers, E.W.: An o(nd) difference algorithm and its

variations Algorithmica 1(2), 251–266 (1986)

[6] Levenshtein, V.I.: Binary codes capable of correcting

deletions, insertions, and reversals Probl. Inf. Transm. 1,

8–17 (1965)

[7] Edit distance for a run-length-encoded string and an

uncompressed string J.J. Liu , G.S. Huang , Y.L. Wanga ,

R.C.T. Lee Information Processing Letters 105 (2007)

[8] Introduction to algorithms Thomas Cormen, Charles

Lieserson, Ronald Rivest MIT press, Mc Graw Hill

publications , Twenty-fifth printing 1990, Page 301-31

[9] Error detecting and error correcting codes, R.W.

Hamming, The Bell System Technical Journal, Volume

29, Number 2 , 60-74, April 1950

[10] D.S. Hirschberg, A linear space algorithm for computing

maximal common subsequences, Comm. Assoc. Comput.

Mach., 18:6, 341-343, 1975.

[11] V. L. ARLAZAROV, E. A. DINIC, M. A. KRONROD,

AND I. A. FARADZEV, On economic construction of the

transitive closure of a directed graph, Dokl. Akad, Nauk

SSSR 194 (1970), 487-488

[12] J. E. HOPCROFT, W. J. PAUL, AND L. G. VALIANT,

On time versus space and other related problems, in

Proceedings, 16th Annual Symposium on Foundations of

Computer Science, Berkeley, 1975,‖ pp. 57-6

[13] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN,

―The Design and Analysis of Computer Algorithms,‖

Addison-Wesley, Reading, Mass., 1974.

[14] C. S. Iliopoulos and M. S. Rahman. New efficient

algorithms for the lcs and constrained lcs problems. Inf.

Process. Lett., 106(1):13–18, 2008.

[15] R. W. Irving and C. Fraser. Two algorithms for the

longest common subsequence of three (or more) strings. In

CPM ’92: Proceedings of the Third Annual Symposium on

Combinatorial Pattern Matching, pages 214–229, London,

UK, 1992. Springer-Verlag.

[16] T. Jansen and D. Weyland. Analysis of evolutionary

algorithms for the longest common subsequence problem.

In GECCO ’07: Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 939–946,

New York, NY, USA, 2007. ACM.

[17] T. Jiang and M. Li. On the approximation of shortest

common supersequences and longest ommon

subsequences. SIAM J. Comput., 24(5):1122–1139, 1995.

[18] S. K. Kumar and C. P. Rangan. A linear space algorithm

for the lcs problem. Acta Inf., 24(3):353–362, 1987.

[19] S. Kuo and G. R. Cross. An improved algorithm to find

the length of the longest common subsequence of two

strings. SIGIR Forum, 23(3-4):89–99, 1989.

[20] V. I. Levenshtein. Binary codes capable of correcting

deletions, insertions, & reversals. Technical Report8, 1966.

