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Abstract— In computer science, approximate string matching is the technique of finding strings that match a pattern 

approximately (rather than exactly). Most often when we need to match a pattern exact matching is not possible, due to 

insufficient data, broken data, or other such reasons. So we try to find a close match instead of an exact match. And for 

this we need to find the distance between two strings. We have different approaches for the same such as edit distance in 

the form of Hamming distance, Levenshstien distance, Dameru-Levenshstein distance, Jaro-Winkler distance and Longest 

Common Subsequence (LCS). Different algorithms have been made for these different approaches, and we will try to 

analyze some of these algorithms. 
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I. INTRODUCTION 

Approximate string matching is used is finding similar matches 

in search engines like google when the user may want to see 

similar items, or maybe sometimes the user does not enter the 

exact words occurring in the content on the item to be searched, 

and this is done through approximate string matching. It is used 

for the following purposes: 

1) Search engines 

2) Database searching:  

3) Spell Checking  

4)  Signal processing  

5)  File comparison  

6) Screen redisplay  

II. APPROACHES 

Two primary methods used for approximate string matching 

are Edit distance and longest common subsequence. 

A. Edit Distance 

The closeness of a match is measured in terms of the number of 

primitive operations necessary to convert the string into an 

exact match. This number is called the edit distance between 

the string and the pattern. The usual primitive operations are:
 
 

insertion:  cot → coat  

deletion:  coat → cot  

substitution:  coat → cost  

There are several different ways to define an edit distance, 

depending on which edit operations are allowed: replace, delete, 

insert, transpose, and so on. There are algorithms to calculate 

its value under various definitions: Levenshtein distance & 

Hamming distance 

A.1 Levenshtein distance 

The Levenshstein distance is the number of insert, delete and 

substitution operations require to transform one string into 

another. Levenshstein distance is defined as: 

 

 

 

 

 

 

 

For example, the Levenshtein distance between "kitten" and 

"sitting" is 3, since the following three edits change one into 

the other, and there is no way to do it with fewer than three 

edits: 

kitten → sitten (substitution of "s" for "k") 

sitten → sittin (substitution of "i" for "e") 

sittin → sitting (insertion of "g" at the end). 

The matrix used for the comparison of two strings is shown 

below: 

 
Finding the Levenshstein distance between two given strings 

―meilenstein‖ and ―levenshstein‖ through dynamic 

programming. The Levenshstien distance comes out to be 4, as 

given in the bottom right corner of the matrix. The complexity 

of Levenshstien distance is O(mn) 

A.2 Hamming distance 

In information theory, the Hamming distance between two 

strings of equal length is the number of positions at which the 

corresponding symbols are different. In another way, it 

measures the minimum number of substitutions required to 

change one string into the other, or the minimum number of 

errors that could have transformed one string into the other. 

Examples: 

The Hamming distance between: 

"toned" and "roses" is 3. 

1011101 and 1001001 is 2. 
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2173896 and 2233796 is 3. 

Special properties: 

For a fixed length n, the Hamming distance is a metric on the 

vector space of the words of length n, as it obviously fulfils 

the conditions of non-negativity, identity of indiscernible and 

symmetry, and it can be shown easily by complete induction 

that it satisfies the triangle inequality as well. The Hamming 

distance between two words a and b can also be seen as the 

Hamming weight of a−b for an appropriate choice of the − 

operator. 

For binary strings a and b the Hamming distance is equal to the 

number of ones (population count) in a XOR b. The metric 

space of length-n binary strings, with the Hamming distance, is 

known as the Hamming cube; it is equivalent as a metric space 

to the set of distances between vertices in a hypercube graph. 

One can also view a binary string of length n as a vector in by 

treating each symbol in the string as a real coordinate; with this 

embedding, the strings form the vertices of an n-dimensional 

hypercube, and the Hamming distance of the strings is 

equivalent to the Manhattan distance between the vertices. 

The complexity for hamming distance is O(n)  

A.3 Comparisons: 

1. The complexity of Levenshtein distance is O(mn) 

    The complexity for hamming distance is O(n)  

2. The Levenshtein distance works for unequal string. 

     The Hamming distance works for equal string. 

3. The no. of operations used in Levenshtein distance are 3   

    (Insertion, Deletion and Substitution) 

    The no. of operations used in Hamming distance is 1  

    (Substitution) 

B. Longest Common Subsequence (LCS) 

The longest common subsequence is a classical problem which 

is solved by using the dynamic programming approach. The 

LCS problem has an optimal substructure: the problem can be 

broken down into smaller, simple "subproblems", which can be 

broken down into yet simpler subproblems, and so on, until, 

finally, the solution becomes trivial. The LCS problem also has 

overlapping subproblems: the solution to a higher subproblem 

depends on the solutions to several of the lower subproblems. 

Problems with these two properties—optimal substructure and 

overlapping subproblems—can be approached by a problem-

solving technique called dynamic programming, in which the 

solution is built up starting with the simplest subproblems. The 

procedure requires memoization—saving the solutions to one 

level of subproblem in a table (analogous to writing them to a 

memo, hence the name) so that the solutions are available to 

the next level of subproblems. 

B.1 Wagner-Fischer Algorithm 

Wagner-Fischer developed in 1974 the one of first algorithms 

which can compute the LCS of two strings. Originally the 

algorithm was intended to compute an edit distance between 

two strings called the problem of string to string correction (the 

usage of the dynamic programming to solve this kind of 

problems was invented by Richard Bellman in 1953). This 

means the number of remove, replace, and insert operations 

needed to change the string into another. 

 

 

 

 

The disadvantage of the Wagner-Fischer algorithm is the equal 

time for all types of inputs no matter how similar inputs are. 

This is impractical when we have some expectation about a 

structure of input strings or about the similarity (input strings 

can be similar at 99%). More complicated algorithms have 

been developed since the straightforward dynamic 

programming and we will investigate principles in next 

sections, however algorithms based on the Wagner-Fischer 

have the worst case time complexity O(mn) even if the average 

time complexity is better. 

The dynamic programming matrix 

 
The above example shows two strings ―GCCCTAGCG‖ and 

―GCGCAATG‖ for which the dynamic programming matrix is 

computed and the length of LCS comes out to be 5. 

B.2 Hirschberg Algorithms 

Hirschberg presented in 1977 an algorithm for computing the 

LCS using the dynamic programming and a divide and conquer 

paradigm, runs in O(mn) time and O(m + n) space Using the 

dynamic programming matrix the time complexity is 

proportional to the product of the lengths of strings. Previously 

Hirschberg presented a modification which uses only linear 

space O(m + n). However, by computing the table in the linear 

space we lose the ability to backtrack the longest common 

subsequence, because only the last row is stored in the memory. 

To obtain the LCS sequence and keep the linear space 

complexity, Hirschberg proposed a divide and conquer 

technique for the dynamic programming table. To be able to 

use the C&D technique, we need to calculate where the optimal 

LCS path is crossing the first half of the table (coordinates of 

that pair). Lets assume that we have two strings x and y, where 

the length of strings are equal without loss of generality. Create 

substrings x1 = x1..n, y1 = y1..m/2, x2 = xn..1, y2 = ym..m /2, where 

the length |x1| = |x2| and |y1| = |y2|. y1 is a prefix of y of the 

length m/2. y2 is a reversed suffix of y of the length m/2 . Then 

calculate the longest common subsequence for x1 and y1, and 

the longest common subsequence of reversed strings x2 and y2. 

Formally LCS(x1..n, y1..m/2) and LCS(xn..1, ym..m/2).  
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Table 1 and Table 2 shows the computed LCS for that strings 

and Table 3 sums values of last rows. The first highest value in 

the row, the value of 8 in Table 3 denotes the middle of the 

LCS sequence. 

 

 

 

 

 

 

 

 

 

 

Table 1: The dynamic programming table for ‖acebda‖ 

and ‖acbdeacbed‖ 

 

 

 

 

 

 

 

 

 

 

Table 2: The dynamic programming table for ‖debabb‖ 

and ‖debcaedbca‖ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Sum of last rows of Tables 1.2 and reversed 1.3 

B.3 Hunt-Szymanski Algorithm 

The Hunt-Szymanski algorithm solves the LCS problem in O 

((r + n) log(n)) time and in O(r + n) space, where r denotes the 

number of match points. When the number of match points is 

small, the algorithm is very efficient.  

The algorithm is a representant of row-by-row paradigm 

presented previously. It tries to optimize the number of 

comparison by remembering where a contour line crosses the X 

axis vertically. Hunt-Szymanski developed an array called the 

THRESHOLD where stores indices of contours crossing the 

axis and speed up the computation by decreasing the number of 

cell comparisons.  

Lets first discover how the THRESHOLD array is being 

computed and then how the Hunt-Szymanski algorithm works. 

The THRESHOLD array (Figure 2, symbol ―-‖ denotes 

undefined value) has the length of the first string. All values are 

initialized to |n|+1 that is undefined. After processing a row of 

the dynamic programming table, the array contains indices 

where contour lines are crossing the X axis. When a new 

contour is found on the current row. The rank of the pair is 

computed and is also the value of the cell of the table. 

Afterwards we only find the index in the THRESHOLD array 

which satisfies the condition array[i - 1] < k ≤ array[i + 1] by 

using the binary search (this step corresponds to moving the 

contour line to the left). The last step is to update the array and 

move to next pairs. The modified algorithm will run in O(n
3 

log(n)) that is much worse than the simple Wagner-Fischer 

algorithm 

A simple improvement proposed by Hunt-Szymanski can be 

made. Sort input strings (Figure 3) alphabetically in the 

decreasing order and remember original indices of symbols in 

the string. Create an array (Figure 1) of the linked list of the 

length of the second string. And for each symbol from the first 

string precompute all pairs and put indices of equal symbols 

from the second string in the decreasing order in the linked list 

(for example, the second line ‖c‖ in Figure 1 denotes that only 

symbols at 6, 5, 2 equal to ‖c‖). This structure is called 

MATCHLIST and decrease the number of comparison because 

we are advancing only over symbols which match on the 

current line.  

The MATCHLIST can be created in O(n log(n)) by using for 

example the quick sort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Hunt-Szymanski MATCHLIST array for 

strings ‖cbacbaaba‖ & ‖abcdbb‖ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Hunt-Szymanski THRESHOLD array for 

strings ‖cbacbaaba‖ & ‖abcdbb‖ 
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Figure 3: Sorted strings ‖cbacbaaba‖ and ‖abcdbb‖ 

B.4 Kuo-Cross Algorithm 

The construction of the THRESHOLD array is not optimal in 

terms of unnecessary updates. Kuo-Cross presented a 

modification of the original algorithm, where a matchlist is 

sorted in the increasing order and matches are processed left to 

right. The different direction avoids unnecessary updates 

(Figure 4 & 5) to the array and a value of the array is rewritten 

only once (for the worst case scenario for the Hunt-Szymanski 

algorithm, it is the number of elements in the matchlist for a 

symbol). 

Time and space complexity The algorithm avoids unnecessary 

updates to the THRESH-OLD array and runs in O(σ + n(r + 

log(n))) compared to the original Hunt-Szymanski O((r + n) 

log(n)). The algorithm uses O(r + n) as much memory as the 

Hunt-Szymanski algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The Kuo-Cross MATCHLIST array for 

strings ‖cbacbaaba‖ and ‖abcdbb‖ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The number of rewrites for the HS THRESHOLD 

array (strings ‖cbacbaaba‖ and ‖abcdbb‖) 

B.5 Myers-Miller Algorithm 

It is a diagonalwise algorithm for two strings with the linear 

space complexity. The algorithm solves the LCS and the SES 

problem in O(n(m-r)), where m and n denote lengths of input 

strings and r the total number of ordered pairs. The only 

structure the algorithm uses is the linear array O(m + n) of 

temporary x values. 

To understand how the algorithm works, lets first define an edit 

graph. The edit graph is a graph corresponding to the dynamic 

programming table. The difference is that cells are replaces by 

vertices and three types of edges. Diagonal edges represent 

cases where symbols at given positions are equal. Horizontal 

and vertical edges where symbols are different and a remove or 

an insert instruction is required. Lets introduce the cost of the 

edge; horizontal and vertical edges have the cost of one and 

diagonal edges the cost of zero. All paths (traces) from [0, 0] to 

[m, n] with the same cost are isomorphic. When two paths are 

isomorphic then there is no difference which path is chosen. 

Furthermore, some cells are not needed to be computed. Look 

at Figure 6, the cell [3,5 = e,a] do not need to be computed 

because from the upper cell the optimal path is connected by 

either a horizontal or a vertical edge. 

In contrast with the row by row or the contour to contour 

approach, the algorithm advances based on calculating the 

number of delete instructions (the Levenshtein distance). The 

advancing is greedy because discards paths corresponding to 

common subsequences with a large Levenshtein distance. 

These paths cannot form the longest common subsequence 

since other paths with a smaller distance exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cells filled by the Myers-Miller algorithm for 

strings ‖acebdabbabed‖ & ‖acbdeacbed‖ 

III.  COMPARISONS OF EXISTING LCS ALGORITHMS 
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Table: List of existing LCS algorithms for two strings 

 

IV.  CONCLUSIONS  

We may say that edit distance and LCS are dual of each other 

as edit distance gives us the number of operations required to 

transform one string into another, whereas LCS gives us the 

common subsequence in two strings. LCS is a special case of 

edit distance as by allowing only insertions and deletions at 

cost 1 we can compute the LCS.  If we consider two strings of 

length m and n, with m<n, then we can form a relation between 

edit distance ed and lcs as n-lcs ≤ ed ≤ n+m – 2lcs, and if n=m 

then we can say that n-lcs ≤ ed ≤ 2(n-lcs). 

One type of edit distance is the Hamming distance , which 

gives us a linear time but it does not give us optimal results 
for σ>2. Even for σ=2 it would give us near optimal results and 

in the worst case it would give way below optimal results. So 

we rule out Hamming distance for our problem. 

Then we come to Myers’ differential algorithm, which has 

complexity in terms of D, the edit distance. For our problem of 

approximate string matching we consider m<<n so we would 

get the edit distance as ed ≥ n-m, and since m<<n, we can write 

ed ≥ n. So our complexity becomes O((n+m)*n) = O(n
2
 + nm) 

= O(n
2
) which is asymptotically greater than O(mn) for 

classical approach to LCS or edit distance. So Myers’ 

algorithm is not well suited to our problem. It is more suited for 

DNA comparisons where D is very small as compared to 

lengths of the strings, and the lengths of the two strings are 

approximately equal. Also note that the worst case of Myers’ 

algorithm corresponds to the best case of our algorithm, and its 

best case corresponds to the worst case of our algorithm as it is 

based on edit disatnce and our algorithm is based on the 

number of matches, which have an approximately inverse 

square relationship. 

And lastly we come to Masek and Paterson algorithm. It has 

the best time for worst case among all algorithms. However, it 

has some limitattions as it works for finite alphabets only, and 

costs of edit operations are integral multiples of a single 

positive real number. So it is not a practical algorithm. 

V. FUTURE SCOPE 

In this section we present new ideas and further improvements 

in the field of computing longest common subsequence.  

1. What to do next? 
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Even the field of the longest common subsequence has been 

intensively studied over past fifty years, there is still a lot to do. 

We will consider only the LCS problem, not the constrained 

longest common subsequence and other problems. 

2. Reduce the overhead factor of the finite automata 

approach Finite automata are able to explore fewer states than 

other algorithms and the experiments have confirmed it. 

Because no algorithm for more strings is developed, finite 

automata remain the best choice. For two strings, WMMM and 

Kuo-Cross are said to be fastest known. Problem is in the large 

overhead factor of a lookup table, a queue and other parts. 

3. Gene LCS for more strings String alignment algorithms 

have not been covered in the work, but the longest common 

subsequence problem has a huge potential in this area. FASTA 

and BLAST algorithms and its modifications are used for 

genetic, but are only approximate not exact. Developing an 

algorithm for comparing millions of DNA sequences in real 

time would revolutionize genetic engineering. 

4. Memory management and cache optimization As the 

length of strings grows, the memory exceeds the capacity of a 

computer and swapping plus page faults slow down the system. 

With a little effort a strategy of computing could be changed to 

minimize page faults. But this should be the last chance to 

improve the performance of implemented algorithms. More 

effective would be to think about a different algorithm with the 

lower time complexity suitable for average input strings. 

5. Algorithms for more strings We have presented some 

algorithms which work for two and more strings. There are 

algorithms developed for two strings; are fast and do not 

require a large amount of the memory space. Almost all of 

them run in the linear time proportional to the sum of lengths of 

strings. The question is, are paradigms extendable to more 

dimensions for more strings? The general problem is in 

mapping of multi dimensional space to linear memory block. 

6. Parallel algorithms Since 1990s the field of parallel 

algorithms of the LCS has been extensively studied. Parallel 

algorithms have been completely omitted in the work. We only 

refer readers to articles discussing parallel modifications of 

algorithms.  

7. Algorithms for compressed strings Even if the algorithm is 

efficient, it still could not be enough to meet low demands on 

the memory usage. Consider we have a large set of input 

strings of billion symbols (for example a set of DNA 

sequences), it will be impractical to have all inputs in the main 

memory. A group of authors from Tohoku University(Japan) 

developed algorithms for computing the longest common 

subsequence of two given SLP(straight line programs)-

compressed strings in O(n
4
 log(n)) time with O(n

3
) space, and 

in O(n
4
) time with O(n

2
) space, respectively, where n denotes 

the size of the input SLP-compressed strings. Some algorithms 

which are able to compute the LCS of run-length-encoded 

strings have been presented recently, but no algorithm for 

widely used compression algorithms (for example LZW or 

DCA) exists and remains for further research. 
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