
Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 116-

Empirical analysis of self-

optimization and fault tolerance

Anshula1, Krishan Kumar2
1Assistant Professor, Computer Science Department, Kalindi College

2Assistant Professor, Department of Computer Science, Kalindi College, University of Delhi

Abstract: Autonomic Computing is a concept that prepares the systems with an intelligence power to adapt

according to the environmental situations. The term is derived from human biology, where the autonomic

nervous system monitors central nervous system. Likewise, it’s the objective of autonomic computing to

endow novel software solutions that can function in an autonomic way, without the need to depend upon

complex and centralized management software and without the need of a human operator to take decisions.

The autonomic computing architecture lays out a roadmap for the implementation of true Self-Managing

software systems. This paper provides a thorough picture of autonomic computing systems, their

characteristics, their architecture, issues, and challenges.

Keywords: Autonomic Computing, Self-Management, Self-Optimization, Fault-Tolerance.

I. INTRODUCTION

Autonomic computing (AC) is generally considered to

be a term first used by IBM in 2001 to describe

computing systems that are said to be self-managing.

The past toward AC may be traced back to the work on

artificial intelligence (AI), artificial neural networks,

robotics, expert systems, intelligent systems, software

agents, and cognitive informatics [1]. When reviewing

the current state-of-the art in autonomic systems, the

concept of self management usually groups into having

four basic properties: self-configuration, self-

optimization, self-healing and self-protection. Here is a

brief description of these properties:

1. Self-configuration: an autonomic computing

system configures itself according to high-level

goals, i.e. by specifying what is desired, not

necessarily how to accomplish it. This can mean

being able to install itself based on the needs of a

given platform and the user.[1]

2. Self-optimization: an autonomic computing system

optimises its use of resources. It may decide to

initiate a change to the system proactively (as

opposed to reactive behaviour) in an attempt to

improve performance.

3. Self-healing: an autonomic computing system

detects and diagnoses problems. What kinds of

problems are detected can be interpreted broadly:

they can be as low-level as a bit-error in a memory

chip (hardware failure) or as high-level as an

erroneous entry in a directory service (software

problem). If possible, it should attempt to fix the

problem, for example by switching to a redundant

component or by downloading and installing

software updates. However, it is important that as a

result of the healing process the system is not further

harmed, for example by the introduction of new

bugs or the loss of vital system settings. Fault-

tolerance is an important aspect of self-healing.

Typically, an autonomic system is said to be

reactive to failures or early signs of a possible

failure.

4. Self-protection: an autonomic system protects itself

from malicious attacks but also from end users who

inadvertently make software changes, e.g. by

deleting an important file. The system autonomously

tunes itself to achieve security, privacy and data

protection. Thus, security is an important aspect of

self-protection, not just in software, but also in

hardware (e.g. TCPA – The Trusted Computing

Platform Alliance). A system may also be able to

anticipate security breaches and prevent them from

occurring in the first place. Self-management

requires that a system monitor its components

(internal knowledge) and its environment (external

knowledge), so that it can adapt to changes that may

occur, which may be known changes or unexpected

changes where a certain amount of artificial

intelligence may be required. However, there is no

agreed definition of what an Autonomic system is,

their evaluation and moreover comparison, is

difficult.

The structure of this paper is as follows. Initially, in

section 2 we started with architecture of Autonomic

computing to attempt to build a map of the subject. To

this end we provide an introduction to the concepts of

Autonomic Computing and describe some research that

is taking place in various fields of computing and some

achievements that have already been made, section 3.

We concentrate on research in the field of software

engineering and describe projects that focus on adding

Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 117-

autonomic behaviour to software systems. In section 4

we had discussed challenges in autonomic computing

field and finally section 5 includes conclusion and future

work.

II. ARCHITECTURE

Generic AC Architecture
The design of technical systems usually focuses on the

intended functionality of the system and often obeys the

―design follows function‖ principle. Consequently, a

system is organized into components that implement the

application specific functions. Such a system is then

embedded into some runtime environment that deals

with execution failures and captures exceptions. We

believe that such a design cannot satisfy the

requirements of AC systems and therefore introduce a

generic architecture that introduces system components

not at the level of application-specific functionalities, but

at the level of functionalities derived from the key

features of AC systems, see Figure 1[7].

Figure 1: A generic AC architecture

Each AC system is situated in some environment or

context. The interaction between the system and its

environment occurs through three system components:

negotiation, execution, and observation[7].

The negotiation component has a two-way interaction

with the environment that allows the system to receive

requirements from the environment, negotiate the

fulfillment of the requested requirements, make itself

known to other systems, or communicate its own

requirements to other AC systems it is aware of. The

main purpose of this component is to receive and

actively construct a target behavior specification based

on its interaction with the environment. This target

behavior specification is added to the shared knowledge

of the system components. Our architecture highly

abstracts from the knowledge contents and format, and

the sharing mechanisms between the various AC system

components. We only assert that the knowledge base

contains a representation of the actual system behavior,

the system itself and the environment as perceived by the

system. When a new target behavior is added to the

shared knowledge, which differs from the actual

behavior, a deliberation process is triggered that will

produce a new behavior. The deliberation process sends

the new behavior to the negotiation component that

decides whether this behavior should be executed. The

decision can for example be based on whether new

requirements have been received that make the behavior

already obsolete. The execution component has a one-

way output interaction with the environment to execute

any behavior that was determined by the deliberation

component and forwarded by the negotiation

component. The execution component concentrates

solely on executing the behavior in a specific

environment, e.g. on expanding high-level action

descriptions in sequences of lower-level system

commands. The observation component has a one-way

input interaction to receive status information from the

environment. The component observes the effect of what

the execution component is executing without knowing

what was actually executed. It adds its observations to

the shared knowledge and produces a representation of

its observations for analysis by the failure recovery

process. Limiting the interaction between the AC system

and its environment helps to address the key factors of

self-protection and hidden complexity. A system with a

controlled interaction is less vulnerable to attacks and

hides its internal complexity by exposing only clearly

defined interfaces to its environment. The types of

interaction we introduced (one-way, two-way)

emphasize the predominant, not necessarily the only

flow of information.

Two components that do not interact directly with the

environment occur in this architecture: deliberation and

failure recovery. As discussed briefly above, the

deliberation component computes new behaviors for the

AC system and encapsulates the ―normal‖ application-

specific functional components. It is responsible for

fulfilling the key factors of self-adaptivity and self-

optimization. Two major fields of AI will play a

dominant role in the development of deliberation

components: machine learning and AI planning. The

failure recovery component adds self-healing and self-

protection capability to the AC system. Interestingly, it

does not interact directly with the environment, but

interacts with the execution and observation components

only. The reason for this design principle lies again in

the need to reduce the complexity of the system and

enhance its robustness at the same time. The failure

recovery receives information about the intended

behavior of the system from the execution, i.e., the

execution component tells it, for example, what action or

command it intends to execute next. This information is

used by the failure recovery to build an internal

expectation of what will happen next in the system

Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 118-

environment. The observation component tells the

failure recovery what it actually observed happening in

the environment. As execution and observation are

completely decoupled in this architecture, they cannot

inadvertently influence each other.

The failure recovery analyzes the deviations between the

intended and the independently observed changes

occurring in the environment. For minimal deviations

(that need to be precisely defined when implementing

this architecture), it computes simple recovery behaviors

that it sends to the execution component for immediate

recovery. If greater deviations occur, it updates the

shared knowledge with a new actual behavior. This will

trigger an actual/target comparison and a new

deliberation process that may lead to the replacement of

the behavior in the execution component.

A particular AC system will be based on a sophisticated

implementation of the generic architecture. In particular,

the sharing of knowledge or information between the

various components will usually distinguish between

globally shared knowledge between all components and

locally shared knowledge between only selected

components. Furthermore, we can expect to see more

than one instance of each component or complex

components that are AC systems themselves. In

particular, the deliberation component will probably

involve a hierarchical decomposition into application

specific functional components, which is already

common in realistic application systems. Self-

configuring AC systems can be expected to involve

several deliberation components— specialized in

computing system behaviors or computing new system

configurations. We regard this architecture more in the

sense of a general design principle that will always

require refinements and even modifications when

instantiated for a particular IT application.

III. PICTURE OF RELATED WORK DONE:

On March 8, 2001, Paul Horn presented importance of

these systems by introducing Autonomic Computing

Systems (ACSs) to the National Academy of

Engineering at Harvard University [4]. Some benefits of

autonomic computing include reduction of costs and

errors, improvement of services and reduction of

complexity. We are going to picture these issued in more

depth in this paper. Many researchers have studied this

subject since 2001. Their studies have been categorized

as follows [2]:

 Architecture and environment for ACSs: S. White

in, and R. Sterritt and D. Bustard in xADL 2.0

Homepage (http://www.isr.uci.edu/projects/xarchuci/)

have described some general architecture for ACSs

and their necessary elements called autonomic

elements.

 Studying criteria for evaluating ACSs: J. A.

McCann and M. C. Huebscher in [1] have proposed

some metrics to evaluate ACSs like cost and

adaptability. Some performance factors such as

security and availability have been discussed by

others.

 ACS properties: These are self-optimization [10],

self configuration [9], self-healing, and self-protection.

Of course, the IBM Group has stated a general schema

for ACSs and their characteristics.

 Evaluation ACS from software engineering vision:

P. Leaney, A. Mac Arthur, and J. Leaney [3] have

established the role of autonomic computing in

developing software projects.

 Challenges in ACSs: J. O. Kephart and many

researches [4] have been done in this context.

 AC Products: Different projects and products have

been developed in both by the industry and the

academic. M. Salehie and L. Tahvildari have outlined

some of these products in [10].

From another view, researches carried out in this field

can be categorized in two groups as the follows:

 Group 1: Researches which describe technologies

related to autonomic computing.

 Group 2: Researches which attempt to develop

autonomic computing as a unified project. However,

the lake of appropriate tools for managing the

complexities in large scale distributed systems has

encouraged researchers to designing and implementing

ACSs features.

Table 1: Research Reviewed

Group Domain Main characteristics Refs

Multi-agent systems

Kuo-Ming, James,

Norman

Framework for multi-agent

systems

Communication middleware based on CORBA

for monitoring and cooperation

[4]

Sterritt, Bustard Autonomic components Heartbeat or pulse monitor for monitoring [6]

Georgiadis,

Magee,

Kramer

Architectural constraints

for self-organising

components

Self-organising components with a global view

expressed as architecture description

[7]

Kumar, Cohen

Adaptive Agent Architecture Broker agents used as to provide fault tolerance

to overlying problem-solving agents.

[8]

Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 119-

Bigus et al

ABLE agent toolkit Framework for building multi-agent systems.

Working on including autonomic agents.

[9]

Architecture design-based autonomic systems

Garlan, Schmerl

Architecture model based

adaptation for

autonomic systems

Probes, gauges for monitoring running system,

architecture manager implements adaptive

behaviour, based on architecture-model of

system.

[1]

[3]

de Lemos,

Fiadeiro

Architecture for fault tolerance

in adaptive

systems

Components considered as black-boxes. [10]

Dashofy, van der

Hoek, Taylor

Framework for architecture-

based adaptive

systems

xADL 2.0 architecture description language,

c2.fw development framework.

[11]

Valetto, Kaiser

Adding autonomic behaviour

to existing systems

Autonomic behaviour as a distributed multiagent

infrastructure called Workflakes.

[12]

Hot swapping components

G. S. Blair et al.

Reflective middleware OpenORB, reflective middleware for self healing

systems.

[16]

Rutherford et al.

Reconfiguration in EJB model BARK tool as an extension to EJB to support

component replacement

[13]

Whisnant,

Kalbarczyk, Iyer

Model for reconfigurable

software

Adaptivity through replacement of bindings

between operations and invoked code blocks.

[14]

Appavoo et al

Hot-swapping at OS level High-performance hot-swapping of fine-grained

components in K42 OS.

[15]

Kon, Campbell et

al.

Reflective middleware Dynamic TAO, a middleware for dynamically

reconfigurable software

[16]

IV. AUTONOMIC COMPUTING CHALLENGES:

Since autonomic computing is a new concept in large

scale heterogeneous systems, there are different

challenges and issues[2]. Some of them have been

explained in the following:

A. Architecture Challenge: Relationships among AEs

have a key role in implementing self-management. These

relationships have a life cycle consisting of specification,

location, negotiation, provision, operation, and

termination stages. Each stage has its own challenges.

Expressing the set of output services that an AE can

perform and the set of input services that it requires in a

standard form, as well as establishing the syntax and

semantics of standard services for AEs, can be a

challenge in specification. As an AE must dynamically

locate input services that it needs and other elements that

need its output services must dynamically locate this

element with looking it up, AE reliability can be a

research area in location stage. AEs also need protocols

and strategies to establish rules of negotiation and to

manage the flow of messages among the negotiators.

One of challenges is for the designer to develop and

analyze negotiation algorithms and protocols, then

determine which negotiation algorithm can be effective.

Automated provision can also be a research area for next

stage. After agreement, the AMs of both AEs control the

operation. If the agreement is violated, different

solutions can be introduced. This can be a research area.

Finally, after both AEs agree to terminate the negotiated

agreement, the procedure should be clarified.

 B. Learning and Optimization Theory: How can we

transfer the management system knowledge from human

experts to ACSs? The master idea is that by observing

that how several human experts solve a problem on

different systems and by using traces of their activities, a

robust learning procedure can be created. This procedure

can automatically perform the same task on a new

system. Of course, facilitating the knowledge acquisition

from the human experts and producing systems that

include this knowledge can be a challenge. One of the

reasons for the success of ACSs is their ability to

manage themselves and react to changes. In short, in

sophisticated autonomic systems, individual components

that interact with each other, must adapt in a dynamic

environment and learn to solve problems based on their

past experiences. Optimization can be a challenge too,

because in such systems, adaptation changes behavior of

agents to reach optimization. The optimization is

examined at AE level.

C. Conceptual Challenges: Conceptual research issues

and challenges include (1) defining appropriate

abstractions and models for specifying, understanding,

controlling, and implementing autonomic behaviors; (2)

adapting classical models and theories for machine

learning, optimization and control to dynamic and multi

agent system; (3) providing effective models for

Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 120-

negotiation that autonomic elements can use to establish

multilateral relationships among themselves; and (4)

designing statistical models of large networked systems

that will let autonomic elements or systems detect or

predict overall problems from a stream of sensor data

from individual devices.

D. Robustness: There are many meanings for

robustness. Robustness has been served in various

sciences and systems such as ecology, engineering, and

social systems. We can interpret it as stability, reliability,

survivability, and fault-tolerance, although it does not

mean all of these. Robustness is the ability of a system to

maintain its functions in an active state, and persist when

changes occur in internal structure of the system or

external environment. Some often mistake it with

stability. Although both stability and robustness focus on

persistence, robustness is broader than stability. It is

possible that components of a system are not themselves

robust, but interconnections among them make

robustness at the system level. A robust system can

perform multiple functionalities for resistance, without

change in the structure. With the design of instructions

that permit systems to preserve their identity even when

they are disrupted, the robustness in systems can be

increased. Robustness is one of grand scientific

challenges which can be also examined in programming.

E. Middleware Challenges: The primary middleware

level research challenge is providing the core services

required to realize autonomic behaviors in a robust,

reliable and scalable manner, in spite of the dynamism

and uncertainty of the system and the application. These

include discovery, messaging, security, privacy, trust,

etc. Autonomic systems/applications will require

autonomic elements to identify themselves, discover and

verify the identities of other entities of interest,

dynamically establish relationships with these entities,

and to interact in a secure manner.

V. CONCLUSION

In this paper, a survey of autonomic computing systems

and their importance was presented. As future

researches, the following topics can be proposed in

autonomic distributed computing domain:

1) Performance evaluation of applying the autonomic

behavior in a distributed computing system model.

2) Designing an autonomic manager in multi-layer P2P

form, so that autonomic behavior and management

information as a knowledge base are stored in separated

layers.

3) Studying languages which develop autonomic

management behavior in a distributed computing

environment.

4) Implementing a self-healing system in a virtual

organization wherein some partners may fail.

VI. REFERENCES

[1] Julie A. McCann, Markus Huebscher ―Evaluation

issues in Autonomic Computing “Grid and Cooperative

Computing - GCC 2004 Workshops, Lecture Notes in

Computer Science Volume 3252, 2004, pp 597-608.

[2] Mohammad Reza Nami, Koen Bertels, A Survey of

Autonomic Computing Systems, Third International

Conference on Autonomic and Autonomous Systems,

2007. ICAS07, IEEE.

[3] Garlan D., B. Schmerl. Model-based Adaptation for

Self-Healing Systems. Proceedings of the first workshop

on Self-healing systems.

[4] J. O. Kephart. Research challenges of autonomic

computing. In Proceedings of the 27th International

Conference on Software Engineering, pages 15–22, May

2005

[5] Kuo-Ming C., James A., Norman P. A Framework

for Intelligent Agents within Effective Concurrent

Design. The Sixth International Conference on

Computer Supported Cooperative Work in Design.

[6] Sterritt R., Bustard D.. Towards an Autonomic

Computing Environment. University of Ulster, Northern

Ireland.

[7] Georgiadis I., Magee J., Kramer J.. Self-Organising

Software Architectures for Distributed Systems. ACM,

Proceedings of the first workshop on Self-healing

systems, November 2002.

[8] Kumar S.,. Cohen P. R. Towards a Fault-Tolerant

Multi-Agent System Architecture.

[9] Bigus J. P. et al. ABLE: A toolkit for building

multiagent autonomic systems. IBM Systems Journal,

Vol. 41.

[10] de Lemos R., Fiadeiro J. L.. An Architectural

Support for Self-Adaptive Software for Treating Faults.

[11] Dashofy E. M., van der Hoek A., Taylor R.N.. An

Infrastructure for the Rapid Development of XML-based

Architecture Description Languages. Proceedings Of the

24th International Conference on Software Engineering

(ICSE2002), Orlando, Florida, May 2002.

[12] Valetto G., Kaiser G.. Combining Mobile Agents

and Process-based Coordination to Achieve Software

Adaptation. Columbia University.

[13] Rutherford M. J., Anderson K., Carzaniga A.,

Heimbigner D., Wolf A. L., Reconfiguration in the

Enterprise Javabean Component Model. Proceedings of

the IFIP/ACM Working Conference on Component

Deployment, Berlin.

[14] Whisnant K., Kalbarczyk Z. T., Iyer R. K., A system

model for dynamically reconfigurable software. IBM

Systems Journal, Vol. 42.

[15] Appavoo J. et al. Enabling autonomic behaviour in

systems software with hot swapping. IBM Systems

Journal, Vol. 42.

[16] Kon F., Campbell R. H., Mickunas M. D.,.

Nahrstedt, K Ballesteros F. J.. 2K: A Distributed

Operating System for Dynamic Heterogeneous

Anshula et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue
3, September 2016, pp. 116-121

© 2016 IJRRA All Rights Reserved page- 121-

Environments. IEEE, Proceedings of The Ninth

International Symposium on High-Performance

Distributed Computing, 1-4 Aug. 2000, Pages 201-208.

[17] Garlan D., Schmerl B., Chan J.. Using Gauges for

Architecture-Based Monitoring and Adaptation Working

Conference on Complex and Dynamic Systems

Architecture, Brisbane, Australia.

[18] Wooldridge M., An Introduction to MultiAgent

Systems. John Wiley & Sons Ltd.

