Some Double Almost $(\lambda_m \mu_n)$ convergence in χ^2 –Riesz spaces defined by Musielak-Orlicz functions

Ayhan Esi¹ and N. Subramanian²

¹Adiyaman University, Department of Mathematics, 02040, Adiyaman, Turkey ²Department of Mathematics, SASTRA University, Thanjavur-613 401, India.

Abstract. In this paper we introduce and study the notions of almost $(\lambda_m \mu_n)$ convergence in χ^2 –Riesz spaces; strongly P – convergence, Cesaro strongly P – convergence with respect to a Musielak-Orlicz functions and examine some properties of the resulting sequence spaces. We also introduce and study the statistical convergence of almost $(\lambda_m \mu_n)$ convergence in χ^2 –Riesz spaces and also some inclusion theorems are discussed.

2010 Mathematics Subject Classification. 40A05,40C05,40D05.

Key words and phrases. analytic sequence, Museialk-Orlicz function, double sequences, chi sequence, Lambda, Riesz space, strongly, statistical convergent

I. INTRODUCTION

We denote by w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We denote by w^2 the set of all complex double sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Let (x_{mn}) be a double sequence of real or complex numbers. Then the series $\sum_{m,n=1}^{\infty} x_{mn}$ is called a double series. The double series $\sum_{m,n=1}^{\infty} x_{mn}$ give one space is said to be convergent if the double sequence (S_{mn}) is convergent, where

$$S_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m,n=1,2,3,\dots)$$

A double sequence $x = (x_{mn})$ is said to be double analytic if

$$\sup_{m,n}|x_{mn}|^{\frac{1}{m+n}}<\infty.$$

The vector space of all double analytic sequences is usually denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if

 $|x_{mn}|^{\frac{1}{m+n}} \to 0$ as $m, n \to \infty$.

The vector space of all double entire sequences is usually denoted by Γ^2 . Let the set of sequences with this property be denoted by Λ^2 and Γ^2 be a metric space with the metric

$$d(x,y) =$$

 $sup_{m,n}\left\{|x_{mn} - y_{mn}|^{\frac{1}{m+n}}; m, n; 1, 2, 3, \dots\right\},$ (1.1)

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 . Let ϕ denote the set of all finite sequences;

Consider a double sequence $x = (x_{mn})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \delta_{ij}$ for all $m, n \in \mathbb{N}$,

$$\delta_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ \cdot & & & & & \cdot \\ \cdot & & & & & \cdot \\ 0 & 0 & \dots & 1 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \end{pmatrix}$$

with 1 in the $(m, n)^{th}$ position and zero otherwise.

A double sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{\frac{1}{m+n}} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 .

II. DEFINITIONS AND PRELIMINARIES

A double sequence $x = (x_{mn})$ has limit 0 (denoted by P - limx = 0)

(i.e) $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. We shall write more briefly as P - convergent to 0.

An Orlicz function is a function $M: [0, \infty) \rightarrow [0, \infty)$ which is continuous, non-decreasing and convex

with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. If convexity of Orlicz function M is replaced by $M(x + y) \le M(x) + M(y)$, then this function is called modulus function. An Orlicz function M is said to satisfy Δ_2 – condition for all values u, if there exists K > 0 such that $M(2u) \le KM(u), u \ge 0$.

2.1 Lemma

Let *M* be an Orlicz functions which satisfies Δ_2 – condition and let $0 < \delta < 1$. Then for each $t \ge \delta$, we have $M(t) < K\delta^{-1}M(2)$ for some constant K > 0. The concept of Orlicz sequence spaces was investigate

by many authors, for some examples can be found at [31,32,33,34,35,36].

A double sequence $M = (M_{mn})$ of Orlicz function is called a Musielak-Orlicz function [see [29,30]]. A double sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v|u - (M_{mn})(u): u \ge 0\}, m, n = 1, 2, \cdots$$

is called the complementary functions of a sequence of Musielak-Orlicz M. For a given sequence of Musielak-Orlicz functions M, the Musielak-Orlicz sequence space t_M is defined as follows

$$t_M = \big\{ x \in w^2 \colon I_M(|x_{mn}|)^{1/m+n} \to 0 \quad as \quad m,n \to \infty \big\},$$

where I_M is a convex modular defined by

$$I_M(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} M_{mn}(|x_{mn}|)^{1/m+n}.$$

2.2 Definition

A double sequence $x = (x_{mn})$ of real numbers is called almost P - convergent to a limit 0 if

$$P - \lim_{p,q \to \infty} \sup_{r,s \ge 0} \frac{1}{pq} \sum_{m=r}^{r+p-1} \sum_{n=s}^{s+q-1} \left((m+n)! |x_{mn}| \right)^{1/m+n} = 0.$$

that is, the average value of (x_{mn}) taken over any rectangle

{(*m*, *n*): $r \le m \le r + p - 1$, $s \le n \le s + q - 1$ } tends to 0 as both *p* and *q* to ∞ , and this *P* - convergence is uniform in *r* and *s*. Let denote the set of sequences with this property as $[\hat{\chi}^2]$.

2.3 Definition

Let $\lambda = (\lambda_m)$ and $\mu = (\mu_n)$ be two non-decreasing sequences of positive real numbers such that each tending to ∞ and

$$\lambda_{m+1} \le \lambda_m + 1, \lambda_1 = 1, \quad \mu_{n+1} \le \mu_n + 1$$

1, $\mu_1 = 1$. Let $I_m = [m - \lambda_m + 1, m]$ and $I_n = [n - \mu_n + 1, n]$. For any set $K \subseteq \mathbb{N} \times \mathbb{N}$, the number

$$\delta_{\lambda,\mu}(K) = \lim_{m,n\to\infty} \frac{1}{\lambda_m \mu_n} |\{(i,j): i \in I_m, j \in I_n\} \}$$

 $I_n, (i, j) \in K$, is called the (λ, μ) – density of the set *K* provided the limit exists.

2.4 Definition

A double sequence $x = (x_{mn})$ of numbers is said to be (λ, μ) – statistical convergent to a number ξ provided that for each $\varepsilon > 0$,

$$\lim_{m,n\to\infty}\frac{1}{\lambda_m\mu_n}|\{(i,j):i\in I_m,j\in I_n,|x_{mn}-$$

 $\xi | \ge \varepsilon \}| = 0,$ that is, the set $K(\varepsilon) = \frac{1}{\lambda_m \mu_n} |\{(i,j): i \in I_m, j \in I_n, |x_{mn} - \xi| \ge \varepsilon\}|$ has (λ, μ) – density zero. In this case the number ξ is called the (λ, μ) – statistical limit of the sequence $x = (x_{mn})$ and we write $St_{(\lambda,\mu)} \lim_{m,n\to\infty} x_{mn} = \xi.$

2.5 Definition

Let *M* be an Orlicz function and $P = (p_{mn})$ be any factorable double sequence of strictly positive real numbers, we define the following sequence space: $\chi_M^2 [AC_{\lambda\mu}, P] = \left\{ P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! |x_{m+r,n+s}| \right)^{1/m+n} \right]^{p_{mn}} = 0, \right\}$, uniformly in *r* and *s*.

We shall denote $\chi_M^2 [AC_{\lambda_m \mu_n}, P]$ as $\chi^2 [AC_{\lambda_m \mu_n}]$ respectively when $p_{mn} = 1$ for all m and n. If x is in $\chi^2 [AC_{\lambda_m \mu_n}, P]$, we shall say that x is almost $(\lambda_m \mu_n)$ in χ^2 strongly P – convergent with respect to the Orlicz function M. Also note if $M(x) = x, p_{mn} = 1$ for all m, n and k then $\chi_M^2 [AC_{\lambda_m \mu_n}, P] = \chi^2 [AC_{\lambda_m \mu_n}, P]$, which are defined as follows: $\chi^2 [AC_{\lambda_m \mu_n}, P] = \{P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} [M((m + n)! |x_{m+r,n+s}|)^{1/m+n}] = 0, \}$, uniformly in r and s. Again note if $p_{mn} = 1$ for all m and n then

 $\chi_{M}^{2} [AC_{\lambda_{m}\mu_{n}}, P] = \chi_{M}^{2} [AC_{\lambda_{m}\mu_{n}}]. \quad \text{We} \quad \text{define}$ $\chi_{M}^{2} [AC_{\lambda_{m}\mu_{n}}, P] = \left\{ P - \lim_{m,n} \frac{1}{\lambda_{m}\mu_{n}} \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + 1) \right)^{2} \right] \right\}$

© 2017 IJRRA All Rights Reserved

n)!
$$|x_{m+r,n+s}|$$
 $\Big)^{1/m+n}\Big]^{pmn} = 0$, $\Big\}$, uniformly in r and s .

2.6 Definition

Let *M* be an Orlicz function and $P = (p_{mn})$ be any factorable double sequence of strictly positive real numbers, we define the following sequence space:

$$\chi_M^2[P] = \left\{ P - \lim_{p,q\to\infty} \frac{1}{pq} \sum_{m=1}^p \sum_{n=1}^q \left[M\left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} = 0 \right\}, \text{ uniformly in } r \text{ and } s.$$

If we take M(x) = x, $p_{mn} = 1$ for all m and n then $\chi^2_M[P] = \chi^2$.

2.7 Definition

The double number sequence x is $S_{\lambda_m \mu_n} - P$ convergent to 0 then

$$P - \lim_{m,n} \frac{1}{\lambda_m \mu_n} \max_{r,s} \left| \left\{ (m,n) \in I_{r,s} : M\left((m+n)! \left| x_{m+r,n+s} - 0 \right| \right)^{1/m+n} \right\} \right| = 0.$$

In this case we write $S_{\lambda_m \mu_n} - \lim(M(m+n)! \left| x_{m+r,n+s} - 0 \right|)^{1/m+n} = 0.$

III. THE DOUBLE ALMOST $(\lambda_m \mu_n)$ in χ^2 in Riesz space

Let $n \in \mathbb{N}$ and d_p on X, a real vector space of dimension m and d_p applied to (x_1, \dots, x_n) with $n \leq m$. A real valued function $d_p(x_1, \dots, x_n) = \| (d_1(x_1, 0), \dots, d_n(x_n, 0)) \|_p$ on X satisfying the following four conditions:

(i) $\| (d_p(x_1, 0), \dots, d_p(x_n, 0)) \|_p = 0$ if and and only if $d_p(x_1, 0), \dots, d_p(x_n, 0)$ are linearly dependent,

(ii) $\| (d_p(x_1, 0), \dots, d_p(x_n, 0)) \|_p$ is invariant under permutation,

(iii)
$$\| (\alpha d_p(x_1, 0), ..., \alpha d_p(x_n, 0)) \|_p = |\alpha| \|$$

 $(d_p(x_1, 0), ..., d_p(x_n, 0)) \|_p, \alpha \in \mathbb{R}$

(iv)
$$d_p((x_1, y_1), (x_2, y_2) \cdots (x_n, y_n)) =$$

 $\left(d_p(x_1, x_2, \cdots x_n)^p + d_p(y_1, y_2, \cdots y_n)^p \right)^{1/p} for 1 \le p < \\ \infty; \text{ (or)}$

(v)
$$d((x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)) := \sup\{d_p(x_1, x_2, \cdots x_n), d_p(y_1, y_2, \cdots y_n)\},\$$

for $x_1, x_2, \dots x_n \in X, y_1, y_2, \dots y_n \in Y$ is called the *p* product metric of the Cartesian product of *n* metric spaces is the *p* norm of the *n*-vector of the norms of the *n* subspaces.

A trivial example of p product metric of n

metric space is the *p* norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the *p* norm:

$$\| (d_p(x_1, 0), \dots, d_p(x_n, 0)) \|_E =$$

$$sup(|det(d_p(x_{mn}, 0))|) =$$

$$sup\begin{pmatrix} |d_p(x_{11}, 0) & d_p(x_{12}, 0) & \dots & d_p(x_{1n}, 0) \\ |d_p(x_{21}, 0) & d_p(x_{22}, 0) & \dots & d_p(x_{1n}, 0) \\ \vdots & & & \\ \vdots & & & \\ |d_p(x_{n1}, 0) & d_p(x_{n2}, 0) & \dots & d_p(x_{nn}, 0) \\ \end{vmatrix} \right)$$

where $x_i = (x_{i1}, \dots x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots n$.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p - metric. Any complete p - metric space is said to be p - Banach metric space.

3.1 **Definition**

Let *L* be a real vector space and let \leq be a partial order on this space. *L* is said to be an ordered vector space if it satisfies the following properties :

(i) If $x, y \in L$ and $y \le x$, then $y + z \le x + z$ for each $z \in L$.

(ii) If $x, y \in L$ and $y \leq x$, then $\lambda y \leq \lambda x$ for each $\lambda \geq 0$.

If in addition L is a lattice with respect to the partial ordering, then L is said to be Riesz space.

A subset S of a Riesz space X is said to be solid if $y \in S$ and $|x| \le |y|$ implies $x \in S$.

A linear topology τ on a Riesz space X is said to be locally solid if τ has a base at zero consisting of solid sets.

3.2 Definition

Let $\chi_M^{2\tau} \left[AC_{\lambda\mu}, P, \left\| \left(d_p(x_1, 0), d_p(x_2, 0), \cdots, d_p(x_{n-1}, 0) \right) \right\|_p \right]$ be a Riesz space of Musielak-Orlicz functions. A sequence (x_{mn}) of points in χ^2 is said to be $S(\tau)$ – convergent to an element 0 of χ^2 if for each τ – neighbourhood V of zero,

$$\delta\left(\left\{m, n \in \mathbb{N}: M_{mn}\left(\left((m+n)! |x_{mn}|\right)^{1/m+n}\right) \notin V\right\}\right) = 0$$

that is , $\left(P - \frac{1}{2}\right)$

$$\lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + 1) \right) \right] \right\} = 0$$

© 2017 IJRRA All Rights Reserved

 $n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \bigg\} \bigg) = 0, \text{ uniformly with}$ respect to r and s.

In this case we write

$$S(\tau) - \left(P - \lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right) = 0, \text{ uniformly with respect to } r \text{ and } s.$$

3.3 Definition

Let $\chi_{M}^{2\tau} \left[AC_{\lambda\mu}, P, \left\| \left(d_{p}(x_{1}, 0), d_{p}(x_{2}, 0), \cdots, d_{p}(x_{n-1}, 0) \right) \right\|_{p} \right]$ be a Riesz space of Musielak-Orlicz functions. A

sequence (x_{mn}) of points in χ^2 is said to be $(\lambda_m \mu_n)$ – sequence convergent to an element 0 of χ^2 if for each τ – neighbourhood V of zero,

$$\delta\left(\left\{m, n \in \mathbb{N}: M_{mn}\left(\left((m+n)! |x_{mn}|\right)^{1/m+n}\right) \notin V\right\}\right) = 0$$

is.

that

$$\lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{v_r v_s} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right\} = 0.$$

N

In this case we write

$$AL_{\lambda\mu}(\tau) - \left(P\right)$$

 $\lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{v_r v_s} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right\} = 0.$

Where $AL_{\lambda\mu}(\tau)$ represents is a double almost $(\lambda \mu)$ strongly summable in χ^2 –Riesz space defined by a Musielak-Orlicz functions.

3.4 Definition

Let $\chi_{M}^{2\tau} \left[AC_{\lambda\mu}, P, \left\| \left(d_{p}(x_{1}, 0), d_{p}(x_{2}, 0), \cdots, d_{p}(x_{n-1}, 0) \right) \right\|_{n} \right]$ be a Riesz space of Musielak-Orlicz functions. A

sequence (x_{mn}) of points in χ^2 is said to be Cesa'ro strongly summable almost $(\lambda \mu)$ – sequence convergent to an element 0 of χ^2 if for each τ – neighbourhood V

of zero,

$$\delta\left(\left\{m,n\in\mathbb{N}:M_{mn}\left(\left((m+n)!|x_{mn}|\right)^{1/m+n}\right)\notin V\right\}\right)=0$$

that is,
$$\left(P - \lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{pq} \left\{ \sum_m^p \sum_n^q \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right) = 0.$$

In this case we write
 $\sigma_{\lambda_m \mu_n}(\tau) - \left(P - \lim_{m=1}^{p_{mn}} \frac{1}{\lambda_m \mu_n} \frac{1}{pq} \left\{ \sum_{m=1}^p \sum_{n=1}^q \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right) = 0.$

Where $\sigma_{\lambda\mu}(\tau)$ represents is a double Ces a'ro strongly summable almost $(\lambda \mu)$ sequence of χ^2 – Riesz space defined by a Musielak-Orlicz functions.

3.5 Definition

Let

 $\chi_{M}^{2\tau} \left[AC_{\lambda\mu}, P, \left\| \left(d_{p}(x_{1}, 0), d_{p}(x_{2}, 0), \cdots, d_{p}(x_{n-1}, 0) \right) \right\|_{p} \right\}$ be a Riesz space of Musielak-Orlicz functions. A sequence (x_{mn}) of points in χ^2 is said to be $S(\tau)$ – statistically convergent to an element 0 of χ^2 if for each τ – neighbourhood V of zero,

$$\delta\left(\left\{m,n\in\mathbb{N}:M_{mn}\left(\left((m+n)!\left|x_{mn}\right|\right)^{1/m+n}\right)\notin V\right\}\right)=0$$

that is,
$$\left(P - \lim_{p,q,m,n,r,s} \frac{1}{\lambda_m \mu_n pq} \frac{1}{pq} card \left\{ (m,n): m \le p, n \le q and \left[M \left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \notin V$$
, for each $\varepsilon > 0 \right\} = 0$.
In this case we write

© 2017 IJRRA All Rights Reserved

$$S(\tau) - \left(P - \lim_{p,q,m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{pq} \quad card \left\{ (m,n): m \\ \leq p,n \\ \leq q \quad and \quad \left[M \left((m \\ + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \geq \varepsilon \\ \notin V, \quad for \quad each \quad \varepsilon > 0 \right\} \right) = 0.$$

3.6 Definition

Let $\chi_M^{2\tau} \left[AC_{\lambda\mu}, P, \left\| \left(d_p(x_1, 0), d_p(x_2, 0), \cdots, d_p(x_{n-1}, 0) \right) \right\|_p \right]$ be a Riesz space of Musielak-Orlicz functions. A sequence (x_{mn}) of points in χ^2 is said to be $S_{\lambda m \mu_n}(\tau)$ – almost $(\lambda \mu)$ statistically convergent to an element 0 of χ^2 if for each τ – neighbourhood V of zero,

$$\delta\left(\left\{m,n\in\mathbb{N}:M_{mn}\left(\left((m+n)!\left|x_{mn}\right|\right)^{1/m+n}\right)\in V\right\}\right)=0$$

that is,
$$\left(P - \lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{v_r v_s} \operatorname{card} \left\{ (m,n) \in I_{rs} \text{ and } \left[M \left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \notin I_{rs} \left(\left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \notin I_{rs}$$

V, for each $\varepsilon > 0$ $\} = 0.$ In this case we write

$$S_{\lambda m \mu n}(\tau) - \left(P - \right)$$

$$\begin{split} \lim_{m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{v_r v_s} & card \left\{ (m,n) \in \right. \\ I_{rs} & and \left[M \left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \notin \\ V, & for & each \quad \varepsilon > 0 \\ \end{split} \right\} = 0. \end{split}$$

A double sequence $\lambda_m \mu_n = (\alpha_r, \beta_s)$ is said to be double almost if there exists sequence (α_r) and (β_s) of non-negative integers such that

$$v_r = \alpha_r - \alpha_{r-1} \to \infty \text{ as } r \to \infty, \alpha_0 = 0$$

 $v_s = \beta_s - \beta_{s-1} \to \infty \text{ as } s \to \infty, \beta_0 = 0$

Let $v_{rs} = v_r v_s$, $\lambda_m \mu_n$ is obtain by $I_{rs} = \{(x, y): \alpha_{r-1} < x \le \alpha_r \text{ and } \beta_{s-1} < y \le \beta_s\}$

IV. MAIN RESULTS

4.1 Theorem

Let $(\lambda_m \mu_n)$ be a double almost Riesz sequence space and *M* be a Musielak-Orlicz functions. Then if double almost $(\lambda_m \mu_n)$ convergence in χ^2 is strongly summable then it is almost $(\lambda_m \mu_n)$ statistically convergent.

Proof: Suppose χ^2 is double almost $(\lambda_m \mu_n)$ convergence in Riesz space of Musielak-Orlicz functions is strongly summable. Then,

$$\left(\lim_{m,n} \frac{1}{\lambda_m \mu_n} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \notin V \right\} \right) = 0. \text{ Now the results}$$

follows from the following inequality

$$\sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \operatorname{card} \left\{ (m,n) \in I_{rs}: \left[M \left((m+n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \right\}$$

Remark: The converse of the above theorem is not true. For it, we consider the following example.

Let $\lambda_m \mu_n = (2^m, 2^n); m, n = 1, 2, 3, \cdots$. Then $S(\tau) = \sigma_{\lambda_m \mu_n}(\tau)$. Consider the sequence $x = (x_{mn})$ as follows:

If $s = i^2$, $i \in \mathbb{N}$ then,

$$\left((m+n)! x_{m+r,n+s}(t)\right) = \left(\begin{bmatrix} 1+\frac{t}{\sqrt{s}}\end{bmatrix}^{1/m+n}, & if \quad -\sqrt{s} \le t \le 0\\ \begin{bmatrix} 1-\frac{t}{\sqrt{s}}\end{bmatrix}^{1/m+n}, & if \quad 0 \le t \le \sqrt{s}\\ 0, & if \quad otherwise \end{bmatrix}$$

If
$$s \neq i^2$$
 then, $((m+n)! x_{m+r,n+s}(t)) = 0$.

The sequence $x = (x_{mn})$ is almost $(\lambda_m \mu_n)$ statistically convergent to 0. But

$$\left(lim_{p,q,m,n,r,s} \frac{1}{\lambda_m \mu_n} \frac{1}{pq} \left\{ \sum_{m=1}^p \sum_{n=1}^q \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \right\} \right)$$

$$\rightarrow 1 \quad as \quad p,q \rightarrow \infty.$$

4.2 Theorem

Let $(\lambda_m \mu_n)$ be a double almost Riesz sequence space and M be a Musielak-Orlicz functions. Then if double almost $(\lambda_m \mu_n)$ convergence in χ^2 is statistically convergent, then it is almost $(\lambda_m \mu_n)$ Cesa'ro strongly.

Proof: Suppose $x = (x_{mn})$ is bounded and statistically convergent to 0, we can find a number N

such that $\left[M(|x_{m+r,n+s}|)^{1/m+n}\right] \le \frac{N}{(m+n)!^{1/m+n}}$ for all $m, n \in \mathbb{N}$.

Since $x = (x_{mn})$ is statistically convergent to 0, for each $\varepsilon > 0$ such that

$$\left(\lim_{p,q,m,n,r,s} \frac{1}{\lambda_m \mu_n pq} \quad card \left\{ (m,n): m \le p, n \le q \quad and \quad \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \right\} \right) = 0.$$

$$Therefore \left(\frac{1}{\lambda_m \mu_n pq} \left\{ \sum_{1 \le m \le p} \sum_{1 \le n \le q} \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \right\} \right) \le \left(\frac{1}{\lambda_m \mu_n pq} \quad card \left\{ (m,n): m \le p, n \le q \quad and \quad \left[M \left((m + n)! \left| x_{m+r,n+s} \right| \right)^{1/m+n} \right]^{p_{mn}} \ge \varepsilon \right\} \right) + \varepsilon.$$

4.3 Theorem

Let $(\lambda_m \mu_n)$ be a double almost Riesz sequence space and *M* be a Musielak-Orlicz functions. Then if double almost $(\lambda_m \mu_n)$ convergence in χ^2 is bounded and statistically convergent, then it is almost $(\lambda_m \mu_n)$ strongly.

Proof: Proof follows by similar arguments as applied to prove above theorem.

4.4 Theorem

Let $(\lambda_m \mu_n)$ be a double almost Riesz sequence space and M be a Musielak-Orlicz functions. Then if double almost $(\lambda_m \mu_n)$ convergence in χ^2 is bounded then it is almost $(\lambda_m \mu_n)$ statistically convergent if and only if strongly.

Proof: Proof follows by combining Theorem 4.1 and Theorem 4.3.

4.5 Theorem

 $AL_{\lambda\mu}(\tau)$ is a complete metric under the metric g is defined by

$$g(x,0) =$$

$$sup_{r,s}\left(\frac{1}{\lambda_{m}\mu_{n}}\frac{1}{v_{r}v_{s}}\left\{\sum_{m\in I_{r,s}}\sum_{n\in I_{r,s}}\left[M\left((m+n)!|x_{m+r,n+s}|,0\right)^{1/m+n}\right]^{p_{mn}}\right\}\right)$$

Proof: It is easy to see that $AL_{\lambda\mu}(\tau)$ is a metric.

To Prove completeness, let x^i be a Cauchy sequence in $AL_{\lambda\mu}(\tau)$, where $x^i = (x_{mn}^i)$ for each $i \in \mathbb{N}$. Therefore for each $\varepsilon > 0$, there exist a positive integer n_0 such that

$$g(x^{r}, 0) =$$

$$\sup_{r,s} \left(\frac{1}{\lambda_{m}\mu_{n}} \frac{1}{v_{r}v_{s}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right|, 0 \right)^{1/m+n} \right]^{p_{mn}} \right\} \right) < \varepsilon \text{ for all } i \ge n_{0}.$$
It follows that
$$\frac{1}{\lambda_{m}\mu_{n}} \frac{1}{v_{r}v_{s}} \left\{ \sum_{m \in I_{r,s}} \sum_{n \in I_{r,s}} \left[M \left((m + n)! \left| x_{m+r,n+s} \right|, 0 \right)^{1/m+n} \right]^{p_{mn}} \right\} < \varepsilon \text{ for all } i \ge n_{0}, \text{ for all } i \ge n_{0}, \text{ for all } r, s \in \mathbb{N}.$$
Hence

$$\left[M\left((m+n)! \left| x_{m+r,n+s} \right|, 0\right)^{1/m+n}\right]^{p_{mn}} < \varepsilon \quad \text{for all}$$

 $m, n \in \mathbb{N}.$

This implies that (x_{mn}^i) is a Cauchy sequence in L(R). But L(R) is complete and so (x_{mn}^i) is convergent in L(R).

Therefore let $lim_{i\to\infty}x_{mn}^i = x_{mn}$, exists for all $m, n \ge 1$.

This implies that $g(x^i, 0) < \varepsilon$ for all $i \ge n_0$. This show that $x = (x_{mn}) \in AL_{\lambda_m \mu_n}(\tau)$.

4.6 Theorem

$$\sigma_{\lambda\mu}(\tau) \text{ is a complete metric space under the metric } g^* \quad \text{defined by } g^*(x,0) = \sup_{r,s} \left(\frac{1}{\lambda_m \mu_n} \frac{1}{r_s} \left\{ \sum_{1 \le m \le r} \sum_{1 \le n \le s} \left[M \left((m + n)! |x_{m+r,n+s}|, 0 \right)^{1/m+n} \right]^{p_{mn}} \right\} \right)$$

Proof: The proof of theorem is followed by theorem 4.5. In fact $\lambda_m \mu_n = (2^r, 2^s); r, s = 1, 2, 3, \cdots$, and $AL_{\lambda\mu}(\tau) = \sigma_{\lambda\mu}(\tau)$.

REFERENCES

- [1]. T.Apostol, Mathematical Analysis, *Addisonwesley*, *London*, **1**978.
- [2]. J.I'A.Bromwich, An introduction to the theory of infinite series *Macmillan and Co.Ltd.*, New York, (1965).
- [3]. G.H.Hardy, On the convergence of certain multiple series, *Proc. Camb. Phil. Soc.*, **19** (1917), 86-95.
- [4]. J.Maddox, Sequence spaces defined by a modulus, *Math. Proc. Cambridge Philos. Soc*, **100(1)** (1986),

161-166.

- [5]. F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- [6]. M.Mursaleen, M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Math.*, Vol. XXXII (1999), 145-150.
- [7]. H.Nakano, Concave modulars, *J. Math. Soc. Japan*, **5**(1953), 29-49.
- [8]. W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, 25(1973), 973-978.
- [9]. B.C.Tripathy, On statistically convergent double sequences, *Tamkang J. Math.*, **34(3)**, (2003), 231-237.
- [10]. P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [11]. M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- [12]. M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, *J. Math. Anal. Appl.*, **293(2)**, (2004), 523-531.
- [13]. Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, *J. Math. Anal. Appl.*, **293(2)**, (2004), 532-540.
- [14]. N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, *Fasciculi Math.*, **46**, (2010).
- [15]. B.Kuttner, Note on strong summability, J. London Math. Soc., 21(1946), 118-122.
- [16]. I.J.Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc., 85(2), (1979), 345-350.
- [17]. J.Cannor, On strong matrix summability with respect to a modulus and statistical convergence, *Canad. Math. Bull.*, **32(2)**, (1989), 194-198.
- [18]. A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, *Math. Ann.*, 53, (1900), 289-321.
- [19]. H.J.Hamilton, Transformations of multiple sequences, *Duke Math. J.*, **2**, (1936), 29-60.
- [20]. A Generalization of multiple sequences transformation, *Duke Math. J.*, **4**, (1938), 343-358.
- [21]. Change of Dimension in sequence transformation, Duke Math. J., 4, (1938), 341-342.
- [22]. Preservation of partial Limits in Multiple sequence

transformations, *Duke Math. J.*, **4**, (1939), 293-297.

- [23]. G.M.Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50-73.
- [24]. B.Altay and F.BaSar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , (0 ,*Commun. Math.Anal.*,**2(2)**, (2007), 1-11.
- [25]. R.Colak, M.Et and E.Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, *Firat Univ. Elazig, Turkey*, **2004**, pp. 1-63, Firat Univ. Press, (2004), ISBN: 975-394-0386-6.
- [26]. E.Savas and Richard F. Patterson, On some double almost lacunary sequence spaces defined by Orlicz functions, *Filomat* (*Niš*), **19**, (2005), 35-44.
- [27]. N.Subramanian and A. Esi, The generalized triple difference of χ^3 sequence spaces, *Global Journal of Mathematical Analysis*, **3(2)**, (2015), 54-60.
- [28]. N.Subramanian and A. Esi, The $\int \chi^{3\lambda I}$ statistical convergence of pre-Cauchy over the p metric space, Annals of the University of Craiova Mathematics and Computer Science Series, communicated.
- [29]. L.Maligranda, Orlicz spaces and interpolation, In:Seminars in Mathematics, 5, *Polish Academy of Sciences*, 1989.
- [30]. J. Musielak, Orlicz Spaces, Lectures Notes in Math., 1034, *Springer-Verlag*, **1983**.
- [31]. A.Esi, M.Is k.,and A.Esi., "On Some New Sequence Spaces Defined By Orlicz Functions" Indian J.Pure Appl.Math. **35** (1)(2004),31-36.
- [32]. A. Esi and M.N.Çatalbas, Some new generalized difference double sequence spaces via Orlicz functions, Scientia Magna, 7(3)(2011), 59-68.
- [33]. A. Esi, M.Acikgoz and Ayten Esi, On a class of generalized sequences related to the lp space defined by Orlicz function, Bol.Soc.Paran Mat. 31(1)(2013), 113-123.
- [34]. A. Esi,M.K.Özdemir, A.Esi, On some real valued I-convergent λ -summable difference sequence spaces defined by sequences of Orlicz functions, Inf.Sci.Lett.5(2)(2016), 47-51.
- [35]. A.Esi and M.N.Çatalbas, Some sequence spaces of interval numbers defined by Orlicz functions, Proceedings of the Jangjeon Mathematical Society, 20(1)(2017), 35-41.
- [36]. A. Esi, B.Hazarika and A. Esi, New type of lacunary Orlicz difference sequence spaces generated by Infinite matricas, Filomat 30(12) (2016), 3195-3208.