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Abstract: Background modeling has emerged as a popular foreground detection technique for various applica- tions in video 

surveillance. Background modeling methods have become increasing efficient in robustly modeling the background and hence 

detecting moving objects in any visual scene. Although several background subtraction and foreground detection have been 

proposed recently, no traditional algorithm today still seem to be able to simultaneously address all the key challenges of 

illumination variation, dynamic camera motion, cluttered background and occlusion. This limitation can be attributed to the 

lack of systematic investigation concerning the role and importance of features within background modeling and foreground 

detection. With the availability of a rather large set of invariant features, the challenge is in determining the best combination 

of features that would improve accuracy and robustness in detection. The purpose of this study is to initiate a rigorous and 

comprehensive survey of features used within background modeling and foreground detection. Further, this paper presents a 

systematic experimental and statistical analysis of techniques that provide valuable insight on the trends in background 

modeling and use it to draw meaningful recommendations for practitioners. In this paper, a preliminary review of the key 

characteristics of features based on the types and sizes is provided in addition to investigating their intrinsic spectral, spatial 

and temporal properties. Furthermore, improvements using statistical and fuzzy tools are examined and techniques based on 

multiple features are benchmarked against reliability and selection criterion. Finally, a description of the different resources 

available such as datasets and codes is provided. 
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I. INTRODUCTION 

Background modeling and foreground detection are important steps 

for video processing applications in video-surveillance [1], optical 

motion capture [2], multimedia [3], teleconferencing and human–

computer interface. The aim is to separate the moving objects, 

called ‘‘foreground’’, from the static information, called 

‘‘background’’. For example, Fig. 1 shows an original frame of    a 

sequence from the BMC 2012 dataset [4], the reconstructed 

background image and the moving objects mask obtained from a 

decomposition into the low-rank matrix and sparse matrix based 

model [5]. Conventional background modeling methods exploit the 

temporal variation of each pixel to model the background and hence 

use it in conjunction with change detection for foreground 

extraction. The last decade witnessed very significant contribu- 

tions to this field [5–14]. Despite these works and advances to 

background modeling and foreground detection, the dynamic na- 

ture of visual scenes attributed by changing illumination condi- 

tions, occlusion, background clutter and noise have challenged the 

robustness of such techniques. Under this pretext, focus has shifted 

towards the investigation of features and their role in improving 

both the accuracy and robustness of background modeling and 

foreground detection. Although fundamental low-level features 

such as color, edge, texture, motion and stereo have reported 

reasonable success, recent visual applications using mobile devices 

and internet videos where the background is non-static, require 

more complex representations to guarantee robust moving ob- ject 

detection [15]. Furthermore, in order to generalize existing 

background modeling and foreground detection schemes to real- 

life scenes where dynamic variations are inevitable and the pose of 

the camera is little known, automatic feature selection, model 

selection and adaptation for such schemes are often desired. 

Considering the needs and challenges aforementioned, in this 

paper, a comprehensive review of low-level and hand-crafted fea- 

tures used in background modeling and foreground detection is 

initiated for benchmarking them against the complexities of typi- 

cal dynamic scenes. Thus, the aim of this survey is then to provide 

a first complete overview of the role and the importance of features 

in background modeling and foreground detection by reviewing 

both existing and new ideas for (1) novices who could be students 

or engineers beginning in the field of computer vision, (2) experts 

as we put forward the recent advances that need to be improved, 

and (3) reviewers to evaluate papers in journals, conferences, and 

workshops. In addition, this survey gives a complete overview 

Moreover, an accompanying website called the Features Website1 

is provided. It allows the reader to have a quick access to the main 

resources, and codes in the field. So, this survey is intended to be a 

reference for researchers and developers in industries, as well as 

graduate students, interested in robust background modeling and 

foreground detection in challenging environments. A review 

regarding feature concepts: A first complete overview of low-level 

and hand-crafted features used in background modeling and 

foreground detection over the last decade concerning more than 600 

papers. After a pre- liminary overview on the key concepts in the 

field of fea- tures in Section 2, a survey of spectral features 

including color features are detailed in Section 4. Then, spatial 

features such as edge, texture and stereo features are studied in 

Section 5, Section 6 and Section 7, respectively. Temporal features 

such as motion features are reviewed in Section 8. In Section 15, 

features that are extracted in alternative do- mains other than the 

pixel domain are described.  

II. CLASSIFICATION BY SIZE 

The size of the picture element chosen for interpreting nec- essary 



  
 Jyoti al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 1, March 2017, pp. 

119-125  

© 2017 IJRRA All Rights Reserved                    page-120  

× 

× 

× 

× × 

features that faithfully represent its characteristics plays a crucial 

role in modeling. As mentioned earlier, features can be computed 

from and for a pixel [20], a block [21] or a cluster [22]. That is, the 

size of the picture element that is used to model the background 

and hence for comparing the current image frame to the 

background model, can either be a pixel [20], a block [21], a region 

(Regions of difference [23], shape [24], behavior [25], clus- ter 

[22], super-pixel [26], global appearance [27]) with a feature value. 

During practical implementations, a feature value at a given pixel 

can either depend on the feature value at the pixel itself or on the 

feature values around a predefined neighborhood in the form of a 

block or a cluster. 

Pixel-based Features: These features, otherwise known as point 

features, concern only the pixel at a given location (x, y). This is 

the case of intensity and color features but in some cases include 

stereo features too. The background model applied in this case of 

pixel-based modeling and com- parison is an independent process 

on each individual pixel. Practically, these features are used in uni-

modal or multi- modal pixel-wise background modeling and 

foreground de- tection. Furthermore, pixel-based feature can be 

used to compute the mean or an other statistic value over spatial 

and/or temporal neighborhood to take into account spa- tial and/or 

temporal constraints. Then, the statistic value is assigned to the 

central pixel. For example, Varadarajan et al. [28,29] proposed a 

region-based Mixture of Gaussians called (R-MOG) instead of a 

pixel based MOG. Each region is a square neighborhood which is 

effectively a block of size 44. Then, the color mean obtained from 

the neighborhood is assigned to the central pixel. Block-based 

Features: This category of features is a gen- eralization of the pixel-

type, where in the element size a block of 1 1 or any arbitrary block 

size m n it represents an individual feature. In contrast to the 

previous case of pixel-based feature, which equally applies, spatial 

and/or temporal information can also be computed depending on 

the spatial and temporal interaction of the element to its 

neighborhood as in edge, texture and motion features. To 

completely exploit their potential, the spatial and/or tempo- ral 

properties of these features need to be taken into account in all the 

background subtraction steps to be fully addressed. Practically, 

these block-based features can be assigned to a central pixel of a 

block (or neighborhood), or to all the block. For example, textures 

such as Local Binary Pattern can be assigned at each central pixel 

of a block size 3 3 by moving this block all over the frame, or to 

all the block as in the works of Heikkila and Pietikainen [30], and 

Heikkila et al. [31] which used a pixel-wise LBP histogram based 

one (LBP-P) and a block-wise LBP histogram based approach 

(LBP-B), respectively. Thus, the block-based features can be used 

in pixel-wise or block-wise background modeling and foreground 

detection. When the features are obtained from the video 

compressed domain, the approach is mandatory block-based 

because the block are pre-defined and thus they cannot be moved 

over the frame. However, in block-based modeling and 

comparison, blocks (also called patches [32– 35]) can overlap or 

not [36]. A block is usually obtained as a vector of 3 3 neighbors 

of the current pixel. The advantage is to take into account the 

spatial dimension to improve the robustness and to reduce the 

computation time. Further- more, blocks can be of spatio-temporal 

type called spatio- temporal blocks [37], spatio-temporal 

neighborhoods [38], spatio-temporal patches [39–41] or bricks 

[42–44]) that in- trinsically encapsulate temporal information 

within spatial relationships of a group of pixels. In Pokrajac and 

Late- cki [37], a dimensionality reduction technique is applied to 

obtain a compact vector representation for each block. These 

blocks provide a joint representation of texture and motion 

patterns. One advantage is their robustness to noise and to the 

movement in the background. However, the disadvan- tage is that 

the detection is less precise because only blocks are detected, 

making them unsuitable for applications that require detailed shape 

information. 

Region-based Features: Region-level (cluster-level, super-pixel-

level) features consider element sizes that are non- uniform across 

the image frame considered, and then spe- cific features are 

computed on the corresponding element size. First, pixels in an 

image frame are grouped using an application-specific 

homogeneity criteria, typically exploit- ing partitioning 

mechanisms as follows: (1) region-based mechanisms as in Lin et 

al. [23] with the notion of Regions of Difference (RoD), (2) shape 

mechanisms as proposed  in Jacobs and Pless [24], (3) behavior 

mechanisms as in Jodoin et al. [25], (4) clustering mechanisms as 

discussed by Bhaskar et al. [22,45,46], and Park and Byun [47], and 

(5) super-pixel mechanisms as in Sobral et al. [26], Ebadi et al. 

[48,49], Zhao et al. [50] and Chen et al. [51]. For example in 

Bhaskar et al. [22], each cluster contains pixels that have similar 

features in the color space. Then, the background model is applied 

on these clusters to obtain cluster of pixels classified as background 

or foreground. This cluster-wise approach gives less false alarms. 

Instead of the block-wise approach, the foreground detection is 

obtained at a pixel- level precision. 

Pixel-based features need less time to be extracted than block- 

based or region-based features which require to be computed. In 

literature, in general, it can be summarized that the size of the 

feature and the comparison element determines the robustness of 

background modeling to noise and the challenges met in the videos, 

and often controls precision of foreground detection. A pixel-based 

modeling and comparison gives a pixel-based pre- cision but it is 

less robust to noise compared to block-based or region-based based 

modeling and comparison. However, there are several works which 

combined block-based (or region-based) and pixel-based 

approaches to reduce computation time by first using a block (or 

region) approach, and second to obtain a pixel precision by using a 

pixel-based approach, and they can be classified as follows: (1) 

multi-scales strategies [52–57], (2) multi-levels strate- gies [58–

68], (3) multi-resolutions strategies [69–72], (4) multilayers 

strategies [41,73–84], (5) hierarchical strategies [85–94], and (6) 

coarse-to-fine strategies [95–99]. The analysis of these different 

approaches is out of the scope of this review, and the reader can 

found details about these strategies in [14]. 

III. CLASSIFICATION BY TYPE 

 

Features can be computed in the pixel domain or in a transform 

domain. In this section, features those are predominantly com- 

puted in each domain and their robustness to critical situations in 

real videos, are discussed. 

 

Features in the pixel domain 

Features are popularly computed in the pixel domain as the value 

of the pixel is directly available. The following features are 

commonly used: 
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Intensity features: Intensity features are the most basic features that 

can be provide by gray-level cameras or infra- red (IR) cameras 

(see Section 3). 

Color features: The color features in the RGB color space are most 

widely used because it is directly available from the sensor or the 

camera. But the RGB color space has an impor- tant drawback: its 

three components are dependent to each other which increases its 

sensitivity to illumination changes. For example, if a background 

point is covered by the shadow, the three component values at this 

point could be affected because the brightness and the chromaticity 

information are not separated. Thus, the three component values 

increase or decrease together as the lighting increases or decreases, 

re- spectively [100]. Alternative color spaces that have also been 

explored in the literature include YUV or YCrCb spaces. Sev- eral 

comparisons between these color spaces are available in the 

literature including [101–105] and usually YCrCb is selected as the 

most appropriate color space. Although color features are often 

very discriminative features of objects, they have several 

limitations in the presence of challenges such as illumination 

changes, camouflage and shadows (see Edge features: The ambient 

light present in the scene can significantly affect the appearance of 

moving objects. How- ever, spectral features, are limited by their 

ability to adapt to such changes in appearance. Thus, edge features 

emerged as a robust alternative for moving object detection. Edge 

fea- tures are generally computed using a gradient approaches such 

as Canny, Sobel [100,106–111] or Prewitt [112,113] edge detector. 

It is commonly believed that edge features can handle local 

illumination changes, thus e

liminating the chances of leaving ghosts when foreground objects 

begin to move. Despite some compelling advantages, edge features 

(high pass filters) tend to vary more than other compara- ble 

features based on low pass filters [100]. For example, edge features 

in the horizontal and vertical directions have different reliability 

characteristics, since textured objects have high values in both 

directions, whereas homogeneous objects have low values in both 

directions (see Section 5). 

Texture features: Texture features are appropriate to cope with 

illumination changes and shadows. Some common texture features 

that are generally used within this domain include the Local Binary 

Pattern (LBP) [31], and the Local Ternary Pattern (LTP) [114]. 

Numerous variants of LBP and LTP can be found in the literature 

as can be seen summarized in Table 5. Furthermore, statistical and 

fuzzy textures can be used as developed in Section 6. 

Stereo features: The extraction of stereo features rely on the need 

and use of specific acquisition systems such as a stereo, 3D, 

multiple, Time of Flight (ToF) cameras or RGB-D cameras 

(Microsoft Kinect,2 or Asus Xtion Pro Live3) to obtain the 

disparity information that usually represent the depth in the visual 

scene. It has become well-known that stereo features allow the 

model to deal with the camouflage 

in color [115– 121] (see Section 7). 

Motion features: Motion features are usually obtained via optical 

flow but with the limitation of the computational time. Motion 

features allow the model to deal with irrel- evant background 

motion and clutter [122–128] (see Sec- tion 8). 

Local histogram features: Local histograms are usually computed 

on color features [129–138]. But, local histograms can also be 

computed on edge features [83,139–142] to ob- tain Histograms of 

Oriented Gradients (HOG) (see Section 9). 

Local histon features: Histon [143] is a contour plotted on the top 

of the histograms of three primary color components of a region in 

a manner that the collection of all points falling under the similar 

color sphere of predefined radius, called similarity threshold, 

belongs to one single value. The similar color sphere is the region 

in RGB color space such that all the colors falling in that region 

can be classified as one color. For every intensity value in the base 

histogram, the number of pixels falling under similar color sphere 

is calculated, and this value is added to the histogram value to get 

the histon value of that intensity. Histon can be extended to 3D 

histon and 3D Fuzzy histon as developed by Chiranjeevi and 

Sengupta [143] (see Section 10). 

Local correlogram features: Correlogram was originally proposed 

for computer vision applications like object track- ing [144]. Since, 

correlogram captures the inter-pixel rela- tion of two pixels at a 

given distance, spatial information is obtained in addition to the 

color information. Thus, correlo- grams can efficiently alleviate the 

drawbacks of histograms, which only consider the pixel intensities 

for calculating the distribution. The main drawback of 

correlograms is their  Section 4). In order to solve such issues, 

authors have also  

proposed to use other features like edge, texture and stereo features 

in addition to the color features. 

computation time due to their size of 2563 2563 in RGB, and 256    

2563 in gray level. Hence, the single channel    is quantized to a 

finite number of levels l. Due to this, the correlograms’ size is 

further reduced to l l with l 256. Correlogram can be extended to 

fuzzy correlogram [145] and multi-channel fuzzy correlogram 

[146] (see Section 11). 

Haar-like features: Some authors [94,147–149], used the Haar-like 

features [19]. Haar-like features are features de- fined in real-time 

face detector and based on the similarity with Haar wavelets. Haar-

like features are computed from adjacent rectangular areas at a 

given location in a detection window by adding the pixel intensities 

in each area and by calculating the difference between these sums. 

The main advantage of Haar-like features is their computation 

speed. With the use of integral images, Haar-like features of any 

size can be computed in constant time (see Section 12). in presence 

of gradual or sudden illumination changes [359]. Then, different 

strategies can be found in literature to alle- viate the limitations of 

the basic color spaces: (1) the use of well-known color spaces 

which separate the luminance and the chrominance information 

such as HSV and YCrCb, 

(2) the use of designed shape color space models such as the 

cylinder color model [235,237,360,361], the hybrid cone- cylinder 

[236,362], the ellipsoidal color model [238], the box-based color 

model [239], and the double-trapezium cylinder model [242], (3) 

the use of characteristics in ad- dition of the intensity or color value 

(mean, variance, min- imum, maximum, etc.) (see Section 16), (4) 

the use of de- signed illumination invariant intensity or color 

features ob- tained by normalization [205,219,243,363], (5) the use 

of illumination compensation methods [364–373], and (6) the 

addition of other features (see Section 17). Normalization based 

features sacrifice discriminability while texture fea- tures cannot 

operate on texture-less regions. Both types of features produce large 

missing regions in the foreground mask. 

Edge features: Edge features are obtained with edge de- tectors 

which operate on the difference between neigh- boring pixels, 

hence an edge detector should be  reason-  ably insensitive to global 
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shifts in the mean level, i.e. to global illumination changes. 

Therefore it is interesting  to run background/foreground separation 

algorithms on the output from edge detectors, hopefully reducing 

the effects  of rapid illumination changes. So, the edge could 

handles the local illumination changes but also the ghost leaved 

when waking foreground objects begin to move. However, edge 

features are not sufficiently good to segment the foreground objects 

isolatedly. Indeed, edge features can sometimes han- dle dark and 

light camouflage problems and it is less sensi- tive to global 

illumination changes than color feature [111]. Nevertheless, 

problems like noise, false negative edges due to local illumination 

problems, foreground aperture and camouflage do not allow an 

accurate foreground detection. Furthermore, due to the fact that it 

is sometimes difficult to segment the foreground object borders, it 

is not possible to fill the objects, and solve the foreground aperture 

problem. Since it is not possible to handle dark and light 

camouflage problems only by using edges due to the foreground 

aper- ture difficulty, the brightness of color model is used to solve 

this problem and help to fill the foreground objects. 

Texture features: Texture features allow to be robust in presence of 

shadows and gradual illumination changes, and sometimes in 

dynamic backgrounds. Texture features can produce false 

detections due to textures induced by local illumination effects like 

in cast shadows. Furthermore, an algorithm based only on texture 

may cause detection errors in regions of blank texture and 

heterogeneous texture. 

Motion features: Motion features can handle irrelevant background 

motion and clutter such as waving trees and waves. 

Stereo features: Stereo features allow the model to deal with the 

camouflage in color but not in depth. 

Thus, multiple features approaches with two, three or a set of 

features obtained from a bag-of features or by feature selection are 

suitable to address multiple challenges in the same video (see 

Section 17). A representative work developed by Li et al. [109] 

consists in a sets of features built following the type of background 

(static or dynamic) as follows: 

Features for static background pixels: For modeling pixels 

belonging to a stationary background object, the stable and most 

significant features are its color and local structure 

(gradient). As the gradient is less sensitive to illumination changes, 

the two types of feature vectors are integrated under the Bayes 

framework in the basic product formulation of the likelihoods. 

– Features for dynamic background pixels: For modeling dynamic 

background pixels associated with non stationary objects, color co-

occurrences are used as their dynamic features. This is because the 

color co-occurrence between consecutive frames has been found to 

be suitable to describe the dynamic features associated with non 

stationary back- ground objects, such as moving tree branches or a 

flickering screen. 

 

Features and strategies 

There are several strategies in literature such as multi-scales 

strategies, multi-levels strategies, multi-resolutions strategies, 

multi-layers strategies, hierarchical strategies, and coarse-to-fine 

strategies (see Section 2.1). Practically, different features can be 

used following the scale, the level or the resolution. For example, a 

feature can be used at the block level (such as Haar-like features in 

[94]), and other features can be used at the pixel level (such  as RGB 

in [94]). Thus, these strategies employed multiple features schemes. 

Please see Tables 9–11 for a quick overview. 

 

Features and similarities 

The foreground mask is usually obtained from a similar- 

ity/dissimilarity measure between (1) the direct value of the fea- 

ture in the background model and the current frame, or (2) a value 

computed from the direct value of the feature (mean, variance, 

probability, etc...) in the background model and the current frame. 

This value can be a scalar (intensity value, mean, probability, etc.), 

a vector (2D spatial vector, 3D spatiotemporal vector, etc...) or a 

his- togram (correlogram, etc.). Practically, comparison of features 

can be made by using similarity/dissimilarity measures obtained 

with 

(1) a crisp, statistical or fuzzy distance for scalar cases, (2) a ratio 

for 

scalar cases, (3) linear dependence measure for vector cases, and 

a intersection measure for histogram (correlogram) case. The 

choice of the suitable similarity/dissimilarity measure is guided by 

the properties and the distribution of the concerned features. 

Furthermore, spatial and temporal features such as LBP and LTP 

need also measures for their computing as follows: (1) a measure 

for the distance in the spatial neighborhood, and (2) a measure for 

the distance in the temporal neighborhood. Thus, for spatial and 

temporal features like texture, it needs to choose three distances. 

We list below the different similarity/dissimilarity measures used 

in the literature for foreground detection (see Table 8 for a quick 

overview): 

Similarities for scalar case: Scalar value is the most com- 

mon case in the literature and the similarities used can be classified 

as follows: 

– Difference: The difference computed in a pixel-wise man- ner 

between the feature in the background model and the current frame 

is the most measure used. So, the difference is obtained by a 

distance and then a threshold is used to classify the pixel as 

background or foreground as follows: 

distance(B(x, y) − I(x, y)) < T (4) 

where B(x, y) and I(x, y) are the values of the feature in the 

background image and in the current image, respectively. 

distance(,) is a distance function. Several distance functions have 

been used in the literature and they can be classified as follows: 

Crisp distance: The most common distance function used for 

intensity/color values is the absolute dis- tance [221,374]. Aach et 

al. [375] used a total least squares distance measure. In an other 

work, Yadav and Sing used a quasi-euclidean distance. To compare 

Spatiotemporal Condition Information (SCI), Wang et al. [38] 

designed a specific measure called Neigh- borhood Weighted 

Spatiotemporal Condition Infor- mation (NWSCI). Using 

compressive features [376], Yang et al. [377] developed a (Pixel-

to-Model) P2M distance. 

Statistical distance: To compare the K distribution in the original 

MOG, Stauffer and Grimson [20] used the Mahalanobis distance 

with the RGB features. An alter- native to the Mahalanobis distance 

is the Kullback– Leibler (KL) divergence used in Makantasis et al. 

[378] with the infrared features and Patwardhan et al. [379] with 

the RGB features. In a further work, Pavlidis   et al. [380] claimed 

that the MOG algorithm needs a divergence measure between two 

distributions so that if the divergence measure between the new 

distribu- tion and one of the existing distributions is ‘‘too small’’, 

these two distributions could be merged together. Thus, Pavlidis et 

al. [380] used the Jeffreys divergence measure to check if the 

incoming pixel value can be ascribed to any of the existing K 

Gaussians. Experi- mental results presented by Pavlidis et al. [380] 

show that the false positives are reduced in comparison with the 

Mahalanobis distance and the KL divergence. In an other work, 
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Santoyo-Morales and Hasimoto-Beltran used the Chi-2 distance 

with YUV features instead of the Mahalanobis distance. In a non 

parametric model based on KDE, Ko et al. [381] choose the 

Bhattacharyya distance due to its low computational cost. In an 

other work, Mukherjee et al. [83] developed a distance measure 

based on support weight to compare RGB features. St-Charles and 

Bilodeau [382] employed the Hamming distance to compare 

LSBPs. 

Order-Consistency Measure: Xie et al. [189] used an explicit model 

for the camera response function, the camera noise model, and 

illumination prior. Assum- ing a monotone and nonlinear camera 

response func- tion, Xie et al. [189] show that the sign of the differ- 

ence between two pixel measurements is maintained across global 

illumination changes. Noise statistics are used to transform each 

frame into a confidence frame where each pixel is replaced by a 

probability that it is likely to keep its sign with respect to the most 

different pixel in its neighborhood. Hence, an order consistency 

measure is defined as a distance between two distri- butions. Xie et 

al. [189] used the Bhattacharyya dis- tance due to its properties to 

the Bayes error. Finally, an Illumination Invariant Change Detector 

via order consistency (IICD-OC) is developed. Experimental re- 

sults [189] on videos taken by an omni-directional camera show the 

robustness of IICD-OC against illu- mination changes. But, the 

ordinal measure required a reordering of blocks and it is 

computationally ex- pensive. To solve this problem, Singh et al. 

[383] ex- plicitly modeled noise under which rank-consistency is 

tested, and used a probabilistic generative model under which frame 

blocks are generated. The order- consistency is posed as a 

hypothesis validation prob- lem using fast significance testing 

based on PAV. In a further work, Parameswaran et al. [373] used 

the same order-consistency measure in an illumination 

compensation approach 

 

Location features: The location (x, y) can be used as a fea- ture to 

exploit the dependency between the pixel [150–154] (see Section 

14). 

1.1.1. Feature relevance and learning 
To choose the most discriminative features in a multiple fea- 

tures or feature selection scheme, feature relevance may be ad- 
dressed. More generally, feature relevance can be determined in 
feature learning scheme which can be classified as developed in 
Zhong et al. [348]: 

1. Traditional feature learning: This category includes linear 
algorithms and their kernel extension, and manifold learn- 
ing method. Practically, an learning algorithm can be linear 
or nonlinear, supervised or unsupervised, generative or dis- 
criminative, global or local. For example, Principal 
Compo- nent Analysis (PCA) is a linear, unsupervised, 
generative and global feature learning method, while 
Linear Discriminant Analysis (LDA) is a linear, 
supervised, discriminative and global method. Global 
methods aim to preserve the global information of data in 
the learned feature space, but local ones focus on 
preserving local similarity between data dur- ing learning 
the new representations. For instance, unlike PCA and 
LDA, Locally Linear Embedding (LLE) is a locality- based 
feature learning algorithm. Locality-based feature learning 
like LLE as manifold learning, since it is to discover the 

manifold structure hidden in the high dimensional data. 
2. Deep learning algorithms: Deep learning models includes 

models like Convolutional Neural Network (CNN) [349] 
and Recurrent neural network (RNN). A survey of deep 
learning models can be found in Schmidhuber [349]. 

Feature relevance has been less investigated in background 
modeling and foreground detection methods than manual im- age 
feature methods, such as Local Binary Patterns (LBP) [31], 
histogram of oriented gradients (HOG) [139], and Scale-Invariant 
Feature Transform (SIFT) [252]. For traditional feature learning,  
the one work which concerns feature relevance is the work of 
Molina-Giraldo et al. [350,351]. The feature relevance analysis is 
made through a Principal Component Analysis (PCA), searching 
for directions with greater variance to project the data. Thus,  the 
relevance of the original features is quantified with weight- ing 
factors. Finally, Molina-Giraldo et al. [350,351] developed a 
background subtraction method based a multi-kernel learning in 
which the weight are selected from the feature relevance analysis. 
Experimental results [350,351] on the I2R dataset [109]  show 
that the proposed Weighted Gaussian Kernel Video Segmentation 
(WGKVS) model outperforms SOBS [352]. For deep learning 
algo- rithms, the approaches available in literature can be 
classified as follows: (1) Deep Auto-encoder Networks (DAN) 
[16,353,354], (2) Convolutional Neural Networks (CNN) 
[17,18,355,356], (3) Neural Response Mixture (NeREM) [357]. 

1.1.2. Features and challenges 
In this section, we grouped all the advantages and disadvan- 

tages of the different features in terms of robustness against the 
different challenges met in video and detailed in Bouwmans [9], 
and they can be summarized as follows: 

– Color features: Although intensity and color features are 
often very discriminative features and allow basic fore- 
ground detection, they are not robust in challenges such as 
illumination changes, foreground aperture, camouflage in 
color and shadows. However, intensity can be used in com- 
plementarity of color to deal with different color problems 
such as dark foreground and light foreground. Furthermore, 
this combination solves saturation problems and minimum 
intensity problems [358], and reduces the number of false 
negatives, false positives and increase true positives. But, 
the intensity as colors cannot work with intense shadows 
and highlight that often occur in indoor and outdoor scenes. 

3. Conclusion 

In conclusion, this review on the role and the importance of 
features for background modeling and foreground detection high- 
lights the following points: 

– Features can be classified following their size, their type in 
a specific domain, their intrinsic properties and their math- 
ematical concepts. Each type of features presents different 
robustness against challenges met in videos taken by a 
fixed cameras. For the color feature, YCrCb color space 
seems to be the more suitable feature [105,384]. For the 
texture feature, Silva et al. [339] provided a study on the 
LBP and its variants that show that XCS-LBP is the best 
LBP feature for this application in presence of illumination 
changes and dynamic backgrounds. Although this study 
covered texture features, it is restricted to LBP features and 
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then there is not a full study on the different texture 
features. For the depth feature, it needs to carefully used 
them following their properties as developed in Nghiem 
and Bremond [560]. Features in a domain transform are 
very useful to reduce computation times as in the case of 
compressive sensing features. 

– Several features have been used in other applications and 
none in background modeling and foreground detection 
such several variants of LBP (Multi-scale Region Perpen- 
dicular LBP (MRP-LBP) [299], Scale- and Orientation 
Adap- tive LBP (SOA-LBP) [300]). Furthermore, 
statistical or fuzzy version of crisp feature could be 
investigated such as his- tograms of fuzzy oriented 
gradients [202]. It would be in- teresting to evaluate them 
for this application. 

– Because each feature has its strengths and weaknesses 
against each challenge, multiple features schemes are 
used to combine the advantages of their different 
robustness. Most of the time, gradient, texture, motion 
and stereo fea- tures are used in addition to the color 
feature to deal with camouflage in color, illumination 
changes, dynamic back- grounds and shadows. 
Different fusion operators can be used to combine these 
different features but fuzzy integrals such as the 
Choquet integral [330] and interval-valued Cho- quet 
[188] seem the best way to aggregate different features 
because dependency between features can be taken into 
account. Because there is not a unique feature that 
performs better than any other feature independently of 
the background and foreground properties, feature 
selection allows to use the best feature or the best 
combination of features. Exper- imental results 
provided by the existing approaches show the 
pertinence of feature selection in background modeling 
and foreground detection. However, basic algorithms 
such as Adaboost and Realboost have been used most 
of the time. The most advanced scheme is the IWOC-
SVM algorithm developed by Silva et al. [339], but 
more advanced selection schemes can be used such as 

statistical or fuzzy feature selection. 

To summarize, the most interesting approach seems to fuse 
mul- tiple features with the intervalued fuzzy Choquet 
integral. The best set of features seems to be illumination 
invariant color fea- tures combined with spatio-temporal 
texture features and depth features. Future research should 
concern (1) a full evaluation of texture features, (2) a full 
comparison of feature fusion schemes, 
(1) feature selection schemes and (4) reliability of features be- 
cause it has been less investigated. Finally, features learned by 
deep learning methods such as Stacked Denoising Auto-
Encoder (SDAE) [16] and Convolutional Neural Networks 
(CNN) [17,18] are surely the features that will outperforms all 
the other features because deep learning methods have the sole 
ability of learning features that best fit a given set of data. 
Furthermore, unlike conventional hand-crafted features, 
learned features come from multiple layers which focus on 
various level of details in the video. Thus, learned feature 
representation allows to well capture the intrinsic structural 
properties of a scene and adaptively discover a set of filter 
patterns that are robust to complicated factors such as noise 
and illumination variation. 
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