

Jyoti al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 2, June
2017, pp. 213-216

© 2017 IJRRA All Rights Reserved page-213

−

A Study of Hardware Implementation of Random

Number Generators on FPGA

Jyoti

M.C. A. dept. M.D. University Rohtak
Abstract: Random number generation refers to many applications such as simulation, numerical analysis, cryptog-

raphy etc. Field Programmable Gate Array (FPGA) are reconfigurable hardware systems, which allow rapid

prototyping. This research work is the first comprehensive survey on how random number generators are

implemented on Field Programmable Gate Arrays (FPGAs). A rich and up-to-date list of generators specifi- cally

mapped to FPGA are presented with deepned

 technical details on their definitions and implementations. A classification of these generators is presented, which

encompasses linear and nonlinear (chaotic) pseudo and truly random number generators. A statistical comparison

through standard batteries of tests, as well as implementation comparison based on speed and area performances,

are finally presented.s.

Keywords: Hardware Implementation of Random Number Generators on FPGA

I. INTRODUCTION

Randomness is a common word used in many applications

[1] such as simulations [2], numerical analysis [3],

computer pro- gramming, cryptography [4], decision

making, sampling, etc. The general idea lying behind this

generic word most of the times refers to sequences,

distribution, or uniform outputs generated by a specific

source of entropy. In other words, the probabilities to

generate the same output are equal (50% to have ‘‘0’’ or

‘‘1’’). If we take the security aspect, many cryptosystem

algorithms rely on the generation of random numbers.

These random numbers can serve for instance to produce

large prime numbers which are at the origin of cipher key

construction [5] (for example, in RSA algorithm [6], in

Memory Encryption [7] or Rabin signatures [8]).

Furthermore, when the generators satisfy some very

stringent properties of security, the generated numbers can

act as stream cyphers in symmetric cryptosystems like the

one-time pad, proven cryptographically secure under some

assumptions [9]. Randomiza- tion techniques are especially

critical since these keys are usually updated for each

exchanged message. Even if an adversary has partial

knowledge about the random generator, the behavior of this

latter should remain unpredictable to preserve the overall

security. From a historical point of view, numerical tables

and physical devices have provided the first sources of

randomness designed for scientific applications. On the one

hand, random numbers were extracted from numerical

tables like census reports [10], mathe- matical tables [11]

(like logarithm or trigonometric tables, of inte- grals and of

transcendental functions, etc.), telephone directories, and so

on. On the other hand, random numbers were extracted also

from some kind of mechanical or physical computation like

the first machine of Kendall and Babington-Smith [12],

Ferranti Mark 1 computer system [13] that uses the

resistance noise as a physical entropy to implement the

random number instruction in the accumulator, the RAND

Corporation [14] machine based on an electronic roulette

wheel, or ERNIE (Electronic Random Number Indicator

Equipment [15]), which was a famous random number

machine based on the noise of neon tubes and used in Monte

Carlo simulations [16,17].

These techniques cannot satisfy today’s needs of

randomness due to their mechanical structure, size

limitation when tables are used [11], and memory space.

Furthermore, it may be of im- portance to afford to

reproduce exactly the same ‘‘random se- quence’’ given an

initial condition (called a ‘‘seed’’), for instance in

numerical simulations that must be reproducible — but

physical generation of randomness presented above does

not allow such a reproducibility. With the evolution of

technologies leading to com- puter machines, researchers

start searching for low cost, efficient, and possibly

reproducible Random Number Generators (RNGs). This

search historically began with John von Neumann, who pre-

sented a generation way based on some computer arithmetic

op- erations. Neumann generated numbers by extracting the

middle digits from the square of the previously generated

number and by repeating this operation again and again.

This method called mid-square is periodic and terminates in

a very short cycle. There- fore, periodicity and deterministic

outputs that use an operator or arithmetic functions are

the main difference with the earlier generators. They are

known in literature as ‘‘pseudorandom’’ or ‘‘quasirandom’’

number generators (PRNGs), while circuits that use a

physical source to produce randomness are called ‘‘true’’

random number generators (TRNGs).

TheFPGA devices are reconfigurable hardware systems.

They allow a rapid prototyping, i.e., explore a number of

hardware solutions and select the best one in a shorter time.

The design methodology on FPGA relies on the use of a

High Description Language (i.e, Verilog, VHDL, or

SystemC) and a synthesis tool. Because of this, FPGA has

become popular platforms for implementing random gener-

ators or complete cryptographic schemes, due to the

possibility to achieve high-speed and high-quality

generation of random.

II. STATISTICAL TEST ANALYSIS

Statistical tests are used to evaluate whether the output of a

given RNG can be separated from a real random sequence

Jyoti al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 2, June
2017, pp. 213-216

© 2017 IJRRA All Rights Reserved page-214

−

[−]

obtained, for instance, by rolling a dice. Such tests are

usually grouped in ‘‘Batteries’’, like the FIPS [132],

DieHARD [25], NIST SP800 22 [133], TestU01 [26], or

AIS [134] ones. In what follows, the content of these tests is

recalled, for completeness purpose so as to make our article

self-contained.

The National Institute of Standard and Technologies

introduced their first test battery namely Federal Information

Processing Stan- dard (FIPS) 140-1 [132] in 1994. These

quick result tests have been further updated to the FIPS 140-

2 [135] version, which covers more complex test batteries

(focused for instance on security level).

Meanwhile, the DieHARD battery has been proposed by

George Marsaglia [25]. It contains 18 tests of randomness. It

was designed to provide a better way of analysis in

comparison to the pre- viously released NIST tests. Unlike

this latter, the p-values have now to belong to some fixed

chosen interval α, 1 α , with a signification level of α for 5%

for instance. An example of these batteries are: ‘‘Birthday

spacings’’, ‘‘Overlapping permutations’’, ‘‘Ranks of

matrices’’, ‘‘Monkey tests’’, ‘‘Count the 1′s’’, ‘‘Parking

lot’’, ‘‘Minimum distance’’, ‘‘Random spheres’’, ‘‘The

sqeeze test’’, ‘‘Overlapping sums’’, ‘‘Runs’’, and ‘‘The

craps’’.

The AIS-31 battery [134] is a German standard to test and

eval- uate the security properties of truly random number

generators. It uses 9 statistical tests for the evaluation of a

TRNG. AIS can be divided in two categories: the first one

consists of T0-T4, which are the same function of FIPS 140-

1 [132]. These later are mostly used to test the outputs of a

post-processing. T0 is the ‘‘disjointedness test’’, which

collects 65 536 of 48-bit and verifies that two adjacent values

must not be equal. T1 is the monobit test, T2 is the poker

test, T3 is the run test, and T4 is the longest run test. As for

T5, it is part, is the auto-correlation test, and T6 is a

‘‘uniform distribution test’’ including of 2 sub-tests. T7 is a

‘‘comparative test for multinomial distributions’’, and

finally T8 is an entropy test (Coron’s test).

In the other side, National Institute of Standard and Tech-

nologies introduces a new test battery known as ‘‘NIST

SP800 22’’ [133]. This one aims at testing the random profile

of a given sequence using 15 tests. More precisely, it

evaluates a long binary sequences generated by the RNG for

the randomness and a higher security testing level than the

FIPS 140-2. The tested sequences must have a fixed length

N , where the parameter N is such that 103 < N < 107. Then,

for each statistical test, a set of s sequences is produced by

the RNG under test, and p-values are obtained. They all need

to be larger than 0.0001 to reasonably consider the as-

sociated sequences as uniformly distributed and

cryptographically secure according to NIST standards.

The TestU01 battery is now the most complete and stringent

battery of tests for RNG [26]. It was initially developed by

‘‘Pierre L’Ecuyer’’ and was implemented in the ANSI C

language with more than 516 tests grouped inside 7 big sub-

batteries. This new battery of tests covers various classical

tests already present in other batteries with new algorithms

for performance and cryptographic tests.

III. STATISTICAL RESULTS OF FPGA BASED RNG

In Tables 1 and 2, a number of generators are classified

accord- ing to the battery test they have undergone. As it can

be observed, the most stringent battery (Big crush) has only

been applied twice in the literature, namely [107,122]. Let us

notice that most (P)RNGs pass the Diehard and NIST

batteries, while only a few PRNGs have

next have deeply investigated the non-linear ones, based on

Blum– Blum–Shub or on chaotic maps. Then a large review

of the true random number generators for FPGA has been

proposed, encom- passing respectively the phase-locked

loop, the ring oscillator, the self-timed ring, and the stability

TRNG. For each type of RNG, a hardware analysis regarding

area and throughput has been pro- vided. A section about

statistical tests has finally been proposed, containing the

detail of state-of-the-art batteries of tests, and the test results

of some generators reviewed in this article against these

batteries.

It has been tested using the FIPS that has been integrated

latter inside the NIST. Considering the TestU01 one, only

crush batteries are usually considered. All generators fail at

least one test, with the exception of chaotic iterations

generators that can pass the whole battery.

Authors in [111,112] investigate the related problem for

linear PRNGs. They show too that usual chaotic PRNGs are

not passing the BigCrush when they consider its non

linearity. However, being linear does not lead to a high linear

complexity, which is defined by the degree of their

polynomial characteristic function. How- ever, most random

number generators are linear recursive, and so they fail in the

so-called statistical Linear Complexity Test of TestU01 [26].

This test characterizes the (P)RNGs by their longest LFSR

model: non randomness is claimed when the model is too

short. This model is estimated by using the well-known

Berlekamp– Massey algorithm [136]. It determines the

shortest polynomial of a linearly recurrent finite output

sequence in GF2. Note that all the other generators fail too

the linear complexity test, except for PCG32 and MRG32K

3a: indeed, only PRNGs based on chaotic iterations are

passing TestU01. Under this category, the authors propose

too an extended internal space of 64 bits (CIPRNG-XOR)

for 32 bits generators, when they increase the number of

internal iterations to be uniformly distributed and to pass

statistical tests.

Finally, TRNGs are hard to test with TestU01 (specially the

BigCrush battery), as it needs 1038 random bits for a full

test. Fig. 18 shows a general throughput of the order of kbps,

which makes it difficult to collect the minimum amount of

data needed in such tests. Under these conditions, only the

TRNG of [122] based on ring oscillators has been proven to

pass with success the BigCrush battery. Note finally that

other batteries offer more flexibility and need a lower

amount of bits for their embedded tests (namely, Diehard,

NIST, and AIS), but they are less stringent and trustworthy

than TestU01.

Jyoti al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 2, June
2017, pp. 213-216

© 2017 IJRRA All Rights Reserved page-215

+ ×

−

−

[−]

IV. EXPERIMENTAL RESULTS AND HARDWARE

ANALYSIS

Methodology

Formally speaking, the space represents the allocation cost

of most objects used in the algorithm (tables, indexes, loops,

etc.). It can also be combination of many PRNG algorithms.

In terms of FPGAs, the latter can be translated in memories,

registers, and LUT resources, etc. These resources can be a

single basic operation (like addition or subtraction,

multiplication of variables or constants), algebraic functions

(division, modulo, etc.), or any other elemen- tary function.

The question raised in this section is thus: how much

hardware resources are needed to provide pseudorandom

numbers with a good statistical profile? And which

algorithms outperform the other ones in terms of internal

resources, while providing higher throughput?

Almost aforementioned (P)RNGs have been evaluated

regarding their hardware performance according to three

parameters: (1) the area, which is the result of (LUT FF) 8,

(2) the throughput being the frequency (clock-to-setup)

multiplied by the RNG output length for one clock cycle, and

(3) the ratio between throughput over area in Mega bits per

area unit.

Hardware implementation resources required by linear

(P)RNGs, their throughput, and the rate area over throughput

are presented in Fig. 16, when nonlinear ones are in Fig. 17.

Finally, the TRNGs are represented in Fig. 18.

Let us start to discuss the results obtained with linear

PRNGs, as illustrated in Fig. 16. It appears clearly that the

cellular automata has the lowest area, when compared to the

other approaches. Such results can be explained by the need

of a low amount of resources to store both the states and the

rules in the cellular automata. Conversely, the TGFSR

family deploys BRAM block memories to read 3 word and

write the output in one cycle, whereas LFSR family uses

more LUTs in order to parallelize the shifting process based

on the polynomial equation. Another parameter is the use of

black box as DSP and block memories. The latter optimize

the logic operation as multiplication, support the floating

point, store internal process in a multidimensional bloc, and

finally read and write multiple states in parallel from the

BRAM. These advantages, leading to the difficulty to

compare such designs to other ones that do not have that,

lead naturally to further area bloc consumption in the case of

an ASIC implementation. As a consequence, we will

consider that (P)RNGs without black boxes are better and

more recommended for cryptographic applications.

V. STATISTICAL TEST ANALYSIS

Statistical tests are used to evaluate whether the output of a

given RNG can be separated from a real random sequence

obtained, for instance, by rolling a dice. Such tests are

usually grouped in ‘‘Batteries’’, like the FIPS [132],

DieHARD [25], NIST SP800 22 [133], TestU01 [26], or

AIS [134] ones. In what follows, the content of these tests is

recalled, for completeness purpose so as to make our article

self-contained.

The National Institute of Standard and Technologies

introduced their first test battery namely Federal Information

Processing Stan- dard (FIPS) 140-1 [132] in 1994. These

quick result tests have been further updated to the FIPS 140-

2 [135] version, which covers more complex test batteries

(focused for instance on security level). Meanwhile, the

DieHARD battery has been proposed by George Marsaglia

[25]. It contains 18 tests of randomness. It was designed to

provide a better way of analysis in comparison to the pre-

viously released NIST tests. Unlike this latter, the p-values

have now to belong to some fixed chosen interval α, 1 α ,

with a signification level of α for 5% for instance. An

example of these batteries are: ‘‘Birthday spacings’’,

‘‘Overlapping permutations’’, ‘‘Ranks of matrices’’,

‘‘Monkey tests’’, ‘‘Count the 1′s’’, ‘‘Parking lot’’,

‘‘Minimum distance’’, ‘‘Random spheres’’, ‘‘The sqeeze

test’’, ‘‘Overlapping sums’’, ‘‘Runs’’, and ‘‘The craps’’.

The AIS-31 battery [134] is a German standard to test and

eval- uate the security properties of truly random number

generators. It uses 9 statistical tests for the evaluation of a

TRNG. AIS can be divided in two categories: the first one

consists of T0-T4, which are the same function of FIPS 140-

1 [132]. These later are mostly used to test the outputs of a

post-processing. T0 is the ‘‘disjointedness test’’, which

collects 65 536 of 48-bit and verifies that two adjacent values

must not be equal. T1 is the monobit test, T2 is the poker

test, T3 is the run test, and T4 is the longest run test. As for

T5, it is part, is the auto-correlation test, and T6 is a

‘‘uniform distribution test’’ including of 2 sub-tests. T7 is a

‘‘comparative test for multinomial distributions’’, and

finally T8 is an entropy test (Coron’s test).

In the other side, National Institute of Standard and Tech-

nologies introduces a new test battery known as ‘‘NIST

SP800 22’’ [133]. This one aims at testing the random profile

of a given sequence using 15 tests. More precisely, it

evaluates a long binary sequences generated by the RNG for

the randomness and a higher security testing level than the

FIPS 140-2. The tested sequences must have a fixed length

N , where the parameter N is such that 103 < N < 107. Then,

for each statistical test, a set of s sequences is produced by

the RNG under test, and p-values are obtained. They all need

to be larger than 0.0001 to reasonably consider the as-

sociated sequences as uniformly distributed and

cryptographically secure according to NIST standards.

VI. CONCLUSION

We have provided a widespread coverage of the current re-

search in hardware implementation of random number

generators

[1]. M. Henson, S. Taylor, Memory encryption: a

survey of existing techniques, ACM Comput. Surv.

46 (4) (2014) 53.

[2]. L. Lamport, Constructing digital signatures from a

one-way function, Techni- cal Report CSL-98, SRI

International Palo Alto, 1979.

[3]. C. Shannon, Communication theory of secrecy

systems, Bell Syst. Tech. J. 28 (4) (1949) 656–

715.

[4]. http://dx.doi.org/10.1002/j.1538-

7305.1949.tb00928.x.

[5]. L. Tippett, Random sampling numbers. Arranged

http://refhub.elsevier.com/S1574-0137(16)30227-1/sb7
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb7
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb7
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb7
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb8
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb8
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb8
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb8
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x

Jyoti al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 2, June
2017, pp. 213-216

© 2017 IJRRA All Rights Reserved page-216

by L.H.C. Tippett, Etc, [Tracts for Computers. no.

15.], 1927. http://books.google.dz/books?id=

CZJTMwEACAAJ.

[6]. M. Campbell-Kelly, M. Croarken, R. Flood, E.

Robson, The history of mathe- matical tables, AMC

10 (2005) 12.

[7]. M.G. Kendall, B.B. Smith, Randomness and

random sampling numbers, J. Roy. Stat. Soc.

(1938) 147–166.

[8]. S.H. Lavington, A History of Manchester

Computers, NCC Publications, 1975.

[9]. G.W. Brown, History of Rand’s Random Digits,

Summary, DTIC Document, 1949.

[10]. W. Thomson, Ernie–A mathematical and statistical

analysis, J. Roy. Statist. Soc. Ser. A (1959) 301–

333.

[11]. N. Metropolis, The beginning of the Monte Carlo

method, Los Alamos Science 15 (584) (1987) 125–

130.

[12]. H. Niederreiter, N.-C. R. C. on Random Number

Generation, in: Random Number Generation and

Quasi-Monte Carlo Methods, vol. 63, SIAM, 1992.

[13]. P. L’Ecuyer, Uniform random number generation,

Ann. Oper. Res. 53 (1) (1994) 77–120.

[14]. C.D. Motchenbacher, J.A. Connelly, Low-noise

Electronic System Design, Wiley New York, 1993.

[15]. L. Kleeman, A. Cantoni, Metastable behavior in

digital systems, IEEE Des. Test Comput. 4 (6)

(1987) 4–19.

[16]. G.-C. Hsieh, J.C. Hung, Phase-locked loop

techniques. A survey, Ind. Electron., IEEE Trans.

43 (6) (1996) 609–615.

[17]. R.H. Freeman, H.-C. Hsieh, Distributed memory

architecture for a config- urable logic array and

method for using distributed memory, Google

Patents, US Patent 5,343,406, 1994.

[18]. P.M. Freidin, Logic block with look-up table for

configuration and memory, Google Patents, US

Patent 5,414,377, 1995.

[19]. E. Barker, A. Roginsky, DRAFT nIST Special

Publication 800-131 Recommen- dation for the

Transitioning of Cryptographic Algorithms and

Key Sizes, 2010.

[20]. G. Marsaglia, (1995) The diehard test suite, 1995..

[21]. P. L’Ecuyer, R. Simard, TestU01: AC library for

empirical testing of random number generators,

ACM Trans. Math. Softw. 33 (4) (2007) 22.

[22]. P. L’Ecuyer, F. Panneton, Fast random number

generators based on linear recurrences modulo 2:

overview and comparison, in: Proceedings of the

Winter Simulation Conference, 2005, 2005, p. 10.

http://dx.doi.org/10.1109/ WSC.2005.1574244.

[23]. M. Matsumoto, T. Nishimura, Mersenne twister: a

623-dimensionally equidis- tributed uniform

pseudo-random number generator, ACM Trans.

Model. Comput. Simul. 8 (1) (1998) 3–30.

[24]. R.C. Tausworthe, Random numbers generated by

linear recurrence modulo two, Math. Comp. 19 (90)

(1965) 201–209.

[25]. D.E. Knuth, Deciphering a linear congruential

encryption, IEEE Trans. Inform. Theory 31 (1)

(1985) 49–52.

http://books.google.dz/books%3Fid%3DCZJTMwEACAAJ
http://books.google.dz/books%3Fid%3DCZJTMwEACAAJ
http://books.google.dz/books%3Fid%3DCZJTMwEACAAJ
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb11
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb11
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb11
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb11
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb12
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb12
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb12
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb12
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb13
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb13
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb14
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb14
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb14
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb15
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb15
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb15
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb15
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb16
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb16
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb16
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb16
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb17
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb17
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb17
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb17
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb18
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb18
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb18
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb19
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb19
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb19
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb20
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb20
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb20
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb20
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb21
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb21
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb21
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb21
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb26
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb26
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb26
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb26
http://dx.doi.org/10.1109/WSC.2005.1574244
http://dx.doi.org/10.1109/WSC.2005.1574244
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb28
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb29
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb29
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb29
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb29
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb30
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb30
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb30
http://refhub.elsevier.com/S1574-0137(16)30227-1/sb30

