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Abstract: We treat toric surfaces and their application to construction of error-correcting codes and determination of 

the parameters of the codes, surface veying and expanding the results.  For any integral convex polytope in R2 there 

is an explicit construction of a unique error-correcting code of length (q − 1)2 over the finitefield Fq . The dimension 

of the code is equal to the number of integral points in the polytope.  The code can be considered as obtained by 

evaluation of rational functions on a toric surface associated to the given polytope. Intersection theory on the toric 

surface will in two ways is applied to bind the minimal distance of the code. In some cases we even obtain the precise 

minimal distance of the code. The techniques are illustrated by several examples. 
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I. TORIC CODES: 

Let M≈Z2 be a free Z-module of rank 2 over the integers Z. 

Let ∆ be an integral convex polytope in MR = M ⊗Z R, i.e. a 

compact convex polyhedron such that the vertices belong to 

M.  

   e(m)(Pij ) = (ξ i )λ1 (ξ j )λ2 . 

 Let MZ2 be a free Z-module of rank 2 over the integers Z. 

Let be a n integral convex polytope in MR = M ⊗Z R, i.e. a 

compact convex polyhedron such that the vertices belong to 

M . 

 

Definition 1.1. 

 

 The toric code C ∆ associated to ∆ is linear length of code n 

= (q − 1)2 generated by the vectors 

 
               {(e (m) (Pij )) i=0,...,q−1;j=0,...,q−1 | m ∈ M 

∩∆}……………(1) 

 

Theorem 1.2. Let d be a positive integer and let be the 

polytope in MR with vertices (0, 0), (d, 0), (0, d), see figure 1. 

Assume that d < q − 1. The toric code C∆ has length equal to 

(q−1)2, dimension equal to #(M ∩ ∆) = (d+1)(d+2) ( the 

number of lattice points in ∆ ) and the minimal distance is 

equal to (q − 1)2 − d(q − 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The convex polytope of Theorem 1.2 with vertices 

(0, 0), (d, 0), (0, d).  

 

Theorem 1.3. Let d, e, r be positive integers and let ∆ be the 

polytope in MR with vertices (0, 0), (d, 0), (d, e + rd), (0, e), 

see figure 2. Assume that d < q − 1, that e < q−1 and that e + 

rd < q−1. The toric code C∆ has length equal to (q−1)2, 

dimension equal to 
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Figure 2. The convex polytope of Theorem 1.3 with vertices 

(0, 0), (d, 0), (d, e + rd), (0, e). 

      

  #(M  ∩ ∆) = (d+1)(e+1)+ r 
d(d+1)

2
     (the number of lattice 

points in ∆ ) and the minimal distance is equal to   Min{(q 

−1−d)(q −1−e), (q −1)(q −1−e−rd)}. 

Using various intersection techniques on suitable chosen 

toric surfaces, we obtain the following new results. 

Theorem 1.4. Let d be a positive integers and let ∆ be the 

polytope in MR with vertices (0, 0), (d, 0), (0, 2d), see figure 

3. Assume that 2d < q − 1. The toric code C∆ has length equal 

to (q − 1)2 , dimension equal to #(M \ ∆) = d2 + 2d + 1 (the 

number of lattice points in ∆) and the minimal distance is 

greater or equal to 

      (q − 1)2 − 2d(q − 1) = (q − 1)(q − 1 − 2d). 

 

 
Figure 3.The convex polytope of Theorem 1.4 with 
vertices (0, 0), (d, 0), (0, 2d). 
 

Theorem 1.5. Let d, e, f be positive integers such that f > e 

and f −e is even. Let  ∆   be the polytope in MR with vertices 

(0, 0), (d, f − d), (
𝑓−𝑒

2
 , 
𝑓+𝑒

2
 ), (0, e) see figure. 

 

                    Figure 4.vertices (0, 0), (d, f − d), (
𝑓−𝑒

2
 , 
𝑓+𝑒

2
 

), (0, e) 

 

4. Assume that d < q − 1, that e < q − 1 and that 
𝑓+𝑒

2
 < q − 1. 

The toric code C ∆ 

has length equal to (q − 1)2, dimension equal to 

#(M  ∩ ∆) = −1/2 d2 − 1/4 e2 + 1/2 e f − 1/4 f2 + fd + 1/2 f + 

1/2 d + 1/2 e + 1 

(the number of lattice points in ∆) and the minimal distance 

is greater than or equal to 

 

         (q − 1 −  
𝑓+𝑒

2
   )(q − 1 − d). 

In [3] and [4] we presented general methods to obtain the 

dimension and a lower 

bound for the minimal distance of a toric code. D. Joyner has 

in [6] presented 

extensive MAGMA calculations on toric codes. 

 
    In the case of the polytope of Theorem 1.5, shown in figure 

4, we get 

    2. Toric varieties:  
For the general theory of toric varieties we refer to [1] and 

[7]. Here we recollect some of the theory of relevance for the 

present purpose.      Let k be an algebraically let T = (k ∗ ) be 

the n-dimensional torus. A toric variety is a compactification 

X of T with an action T × X → X of T on X that extends the 

natural action of T on itself. 

   

 The character group is 

M = {χ: T → k ∗ |χ is a group homomorphism} and the group 

of 1-parameter subgroups is 

 

N = {λ: k ∗ → T |λ is a group homomorphism}. 

We remark, that M sponds to the character Zn, where the n-

tuple m = (m1 , . . . , mn ) ∈ Zn  

corre- e(m) (t1 , . . . , tn ) = tm
1 ,· · · · · ,tm

n .n1 

 

Also NZn , where the n-tuple u = (u1 , . . . , un ) ∈ Zn 

corresponds to the 1-parameter subgroup 

                            λ(u)(t) = (tu
1 , . . . , tu

n ) . 

                                                     n1 

  For χ ∈ M and λ ∈ N there is an integer < χ, λ >, such that 

the composition χ ◦ λ: k ∗ → k ∗ is of the form 

 

                χ ◦ λ (t) = t<χ, λ> . 

 

This gives a perfect pairing < −, − > M × N → Z and in the 

notation above, we have that  

          < e(m), λ(u) > = m1 u1 +· · ·+m n un .  Let MR = M ⊗Z 

R and NR = N ⊗Z R with canonical R - bilinear pairing < −, 

− >: MR × NR → R. 

 

2.1. Convex polytopes and support functions. Fans, normal 

fans and   refined normal fans. Given a n-dimensional integral 

convex polytope in MR . The support function of the polytope 

is the function. 

The normal fan and the refined normal fan with primitive 

generators of the 1-dimensional cones of the polytope in  

figure 3. The added 1-dimensional cone in the refined fan is 

shown as a dotted half line. Lattice and we obtain the refined 
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normal fan. In the 2-dimensional case there is a method using 

continued fractions to obtain the refinement,  

 
                                                 Figure 5. 

The normal fan and the refined normal fan with primitive 

generators of the 1-dimensional cones of the polytope in 

figure 3. The added 1-dimensional cone in the refined fan is 

shown as a dotted halfline. 

2.1.1.  

Pick’s formula for the number of lattice points in a convex 

polytope. It will be important to calculate the number of 

lattice point’s # in a convex polytope. In the 2-dimensional 

case Pick’s formula gives that  

 

                        # ∆   = Vol2.(∆)+   
 Perimeter(∆ ) 

2
 +1 

 

In calculating the perimeter one should take into account that 

the length of an edge of is one more that the number af lattice 

points lying strictly between the endpoints of the edge.    

In the case of the polytope of Theorem 1.4, shown in figure 

3, we get 

                       

           

                     # ∆   = 
  2𝑑.𝑑

2
 +
𝑑+2𝑑+𝑑 

2
 +1 = 1+ 2d+ d2 

 

                       # ∆   =  [g (e + d)- d2/2-(e - f+ 2d )2 

+  
(𝑓+𝑒+2𝑑)2

2
 +1 

 

            #(M  ∩ ∆) = −1/2 d2 − 1/4 e2 + 1/2 e f − 1/4 f2 + fd + 

1/2 f + 1/2 d + 1/2 e + 1 

  
2.1.2. Support functions and fans associated to the polytope 

of Theorem 1.4 shown in figure 3. Let d, e be a positive 

integers and letbe the polytope in MR with vertices (0, 0), (d, 

0), (0, 2d), see figure 3. Assume that 2d < q − 1. In figure 5 

the normal fan and the refined normal fan of the polytope are 

shown together with the primitive generators of the 1-

dimensional cones in the refined normal fan 

           n(𝜌)=(1
0
)  ,  n(𝜌2)=   (0

1
)    n(𝜌3)=(−1

0
)   , n(𝜌4) =(

−2
−1
) 

 

 
                                                              Figure 6. 
     The normal fan and the refined normal fan with primitive 

generators of the 1-dimensional cones of the polytope in 

figure 4. The added 1-dimensional cone in the refined fan is 

shown as a dotted half-line. 

 
Let σ1 be the cone generated by n(ρ1 ) and n(ρ2 ), σ2 be the 

cone generated by n(ρ2 ) and n(ρ3 ) , σ3 the cone generated by 

n(ρ3 ) and n(ρ4 ) and σ4 the cone generated by n(ρ4 ) and n(ρ1 

). 

The corresponding support function is: 
 

    h(𝑛1
𝑛2
) ={

(0
0
)    (𝑛1

𝑛2
) 

(0
𝑑
)      (𝑛1

𝑛2
) 

( 0
2𝑑
)      (𝑛1

𝑛2
) 

 𝑖𝑓     . (𝑛1
𝑛2
)   𝜖    σ2 ∪ σ3  

 
2.1.3. Support functions and fans associated to the polytope 

of Theorem 1.5 shown in figure 4. Let d, e, f be positive 

integers such that f > e and f − e is even. Let ∆ be the polytope 

in MR with vertices (0, 0), (d, f − d), (
𝑓−𝑒

2
 , 
𝑓+𝑒

2
), (0, e) see 

figure4. Assume that d < q − 1, that e < q − 1 and that  
𝑓+𝑒

2
 < 

q − 1. 

In figure 6 the normal fan and the refined normal fan of the 

polytope are shown together with the primitive generators of 

the 1-dimensional cones in the refined normal fan 

 

     n(𝜌)=(1
0
)  ,  n(𝜌2)=   (0

1
)    n(𝜌3)=(−1

0
)   , n(𝜌4) =(

−1
−1
),         

n(𝜌5)= (
0
−1
),    𝑛(𝜌6) =  (

−1
−1
) 

 

      Let σ1 be the   cone by generated by n(ρ1 ) and n(ρ2 ), σ2 

be the cone generated n(ρ2 ) and  

n(ρ3 ) , σ3 the cone generated by n(ρ3 ) and n(ρ4 ), σ4 the cone 

generated by n(ρ4 ) and n(ρ5 ), σ5 the cone generated by n(ρ5 

) and n(ρ6 ) and σ6 the cone 

 

 

    h(𝑛1
𝑛2
) =

{
 
 

 
 (

𝑑
𝑓−𝑑

)   . (𝑛1
𝑛2
) 

(
𝑓−𝑐

2
𝑓+𝑒

2

)     . (𝑛1
𝑛2
) 

(0
𝑒
)  .    (𝑛1

𝑛2
) 

 𝑖𝑓     . (𝑛1
𝑛2
)   𝜖 σ4 , σ5 , σ6  

 

         

2.2.   Toric varieties defined by fans associated to polytopes. 

The toric variety X associated to the refined normal fan ∆ of 

is 

 

                    X = ∪σ∈∆ Uσ 

where Uσ is the Fq - valued points of the affine scheme 

Spec(Fq [Sσ ]), i.e 

 

           Uσ       =  {u : Sσ → Fq |u(0) = 1,  

   u(m + m )  = u(m)u(m ) ∀m, m ∈ Sσb, where Sσ is the 

additive sub semi group of M   

               cSσ = {m ∈ M | < m, y >≥ 0∀ y ∈ σ}. 



Dr. Ashwani Kumar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, 

Issue 1, March 2019, pp. 31-35 

© 2019 IJRRA All Rights Reserved                   page-34 

The toric variety X is irreducible, non-singular and complete,. 

If σ, τ ∈ ∆ and τ is a face of σ, then Uτ is an open subset of 

Uσ . Obviously S0 = M and U0 = TN such that the algebraic 

torus TN
 is an open subset of X. 

   TN acts algebraically on X. On u ∈ Uσ the action of t ∈ TN 

is obtained as   

  (tu)(m):= t(m)u(m)  , m ∈ Sσ  such that tu ∈ Uσ and Uσ is TN 

-stable. The orbits of this action are in one-to-one 

correspondence with ∆. For each σ ∈ ∆  

let  orb(σ) := {u : M ∩ σ → Fq |u is a group homomorphism}.   

Then orb(σ) is a TN orbit in X . Define V (σ) to be the closure 

of orb (σ) in X  

2.3. Support functions and Cartier divisors on toric varieties. 

A ∆-linear support function h gives rise to the Cartier divisor 

Dh. Let ∆ (1) be the 1- dimensional cones in ∆ then 

 

        D h: = -∑ h(n(ρ)) V (ρ).ρ∈∆1  

 

        Dm = div (e (- m)) m ∈ M 

 

Lemma 2.1. Let h be a ∆-linear support function with 

associated Cartier divisor Dh and convex polytope h defined 

in (2.1). The vector space H0 (X, OX (Dh )) of global sections 

of OX (Dh ), i.e. rational functions f on X such that div(f ) + 

Dh ≥ 0 has dimension #(M ∩ h ) and has  

{e(m)|m ∈ M ∩ h } as a basis. 

 

Dh= −∑ h(n(ρ)) V (ρ).ρ∈∆1  = d V (ρ3) + 

2d V (ρ4) 

                           dim H0 (X, OX (Dh )) = d /2 + 2d + 1 , 
 

                         Dh    =     − ∑ h(n(ρ)) V (ρ).ρ∈∆1        

                                 = d V (ρ3) + f V (ρ4 ) + 
𝑓+𝑒

2
  + (ρ5 ) + e V 

(ρ6 ) 

   

 

dim H0 (X, OX (Dh )) =−1/2 d2 − 1/4 e2 + 1/2 ef − 1/4 f 2 + f d 

+ 1/2 f + 1/2 d + 1/2 e + 1. 

 

2.4. Intersection theory and the number of rational zeroes of 

a rational function. For a fixed line bundle L on X, given an 

effective divisor D such that L = OX (D), the fundamental 

question to answer is: How many points from a fixed set P of 

rational points are in the support of D. This question is treated 

in general using intersection theory. Here we will apply the 

same methods when X is a toric surface. 

   For a ∆-linear support function h and a 1-dimensional cone 

ρ ∈ ∆ (1) we will determine the intersection number (Dh ; V 

(ρ)) between the Cartier divisor Dh and V (ρ)) = P1 .The cone 

ρ is the common face of two 2-dimensional cones σ , σ ∈ 

∆(2). Choose primitive elements n , n ∈ N such that 

                        
 
N’ + n” ∈ Rρ 

σ + Rρ = R≥0 n + Rρ 

σ + Rρ = R≥0 n + Rρ 

 

Lemma 2.2. For any lρ ∈ M , such that h coincides with lρ 

on ρ, let h = h − lρ .Then 

                     (Dh ; V (ρ)) = −(h(n ) + h(n ). 

                            n + n + an (ρ) = 0, 

V (ρ) is itself a Cartier divisor and the above gives the self-

intersection number 

 

(V (ρ); V (ρ)) = a. 

More generally the self-intersection number of a Cartier 

divisor Dh is obtained. 

Lemma 2.3. Let Dh be a Cartier divisor and let h be the 

polytope associated to h .The (Dh ; Dh ) = 2 vol.2 ( h ), where 

vol.2 is the normalized Lesbesgue-measure 

 

   In the situation of Theorem 1.4 there are four 1-dimensional 

cones (2.1.2) and 

the intersection table becomes 

                                    V (ρ1)     V (ρ2)        V (ρ3)      V (ρ4) 

                       V (ρ1)     2            1                 0              1 

                       V (ρ2)     1             0                 1              0 

                       V (ρ3)     0            1                -2             1     

                       V (ρ4)     1            0                 1              0 

 

          Table 2.1     In the situation of Theorem 1.5 there are 

six 1-dimensional cones (2.1.3) and the Intersection table 

becomes 

 

                                    V (ρ1)        V (ρ2)      V (ρ3)     V (ρ4)       

V (ρ5)       V (ρ6) 

               V (ρ1)         -1                 1               0            0               

0                1 

               V (ρ2)         1                  0               1            0               

0                0 

               V (ρ3)         0                 1               -1           1               

0                 0 

               V (ρ4)          0                0                1          -1               

1                 0 

               V (ρ5)           0               0                0            1             -

1                1 

               V (ρ6)          1               0                 0            0             1                

-1 

 

                                Table 2.2.  

 Determination of parameters. We start by exhibiting the toric 

codes as evaluation codes. 

                   ∗∗ 

   H (X, OX (Dh ))f  → C ⊂ (Fq ∗ )#T (Fq ) → (f (t))t ∈T (Fq 

) 

and the generators of the code is obtained as the image of the 

basis  

 
e(m) → (e(m)(t))t ∈T (Fq )    as in (1.1).  Fq × Fq belong to 

the q – 1 
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 Let m1 = (1, 0). The Fq -rational points of T lines on X given 

by 

      η∈ Fq (e(m1 ) − η) = 0.  

 Let 0 = f ∈ H0 (X, OX (Dh))   and   assume that f is zero along 

precisely a of these lines. As e (m ) − η and e(m1 ) have the 

same divisors of poles, they have equivalent divisors of 

zeroes, so 

 

div(e(m1 ) − div(f ) + Dh − a(div(e(m1 )))0 ≥ 0 

div (f ) + Dh − a(div(e(m1 ))) 0 ≥ 0 

f ∈ H0 (X, OX (Dh − a(div(e(m1 )))0 ). 

   On any of the other q − 1 − a lines the number of zeroes of 

f is according to  at most the intersection number: 

(Dh − a(div(e(m1 ))0 ; (div(e(m1 ))0 ). 

                                                                

Theorem 1.4. Let m1 = (1, 0). The Fq -rational points of T 

Fq × Fq belong to 

the q − 1 lines on X given by η∈Fq (e(m1 ) − η) = 0. Let 0 = 

f ∈ H0 (X, OX (Dh)) 

and assume that f is zero along precisely a of these lines. As 

seen above this implies 

that 

                       f ∈ H0 (X, OX (Dh − a(div(e(m1 ))0 ), 

which implies that a ≤ d according to Lemma 2.1. On any of 

the other q − 1  a lines the number of zeroes of f is according 

to at most the intersection number: 

(Dh − a(div(e(m1 )))0 ; (div(e(m1 ))0 ) = 

(d V (ρ3 ) + 2d V (ρ4 ) − a V (ρ1 ); a V (ρ1 )) =   2d − 2d 

calculated using the first intersection table of 2.4. The total 

number of zeros for f is therefore most 

a(q − 1) + (q − 1 − a)(2d − 2a) ≤ (q − 1)2d. 

This implies that the evaluation map 

H0 (X, OX (Dh ))Frob → C ⊂ (Fq ∗ )#T (Fq )  

 f  → (f (t))t∈T (Fq ) 

is injective and the dimension and the lower bound for the 

minimal distances of the 

toric code is greater than or equal to 

(q − 1)2 − (q − 1)2d = (q − 1)(q − 1 − 2d). 

2.5.2. Determination of a lower bound for the minimal 

distance in the situation of 

  Fq × Fq belong to Theorem 1.5. Let m1 = (1, 0). The Fq -

rational points of T 

the q − 1 lines on X given by η ∈ Fq (e(m1 ) − η) = 0. Let 0 

= f ∈ H0 (X, OX (Dh )) 

and assume that f is zero along precisely a of these lines. As 

seen above this implies 

that 

                       f ∈ H0 (X, OX (Dh − a(div(e(m1 )))0 ), 

which implies that a ≤ d according to Lemma 2.1.On any of 

the other q − 1 − a lines the number of zeroes of f is according 

to the intersection number: 

(Dh − a(div(e(m1 )))0 ; (div(e(m1 )))0 ) =( d V (ρ3 ) + f V (ρ4 

) +
  𝑓+𝑒

2
→ C ⊂ (Fq ∗ )#T (Fq ). 
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