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ABSTRACT- The increase in sophistication of cyberattacks against encrypted web traffic has uncovered the limitations
of traditional honeypots, which are static and easily discoverable. In light of this limitation, this research presents an
Adaptive HTTPS Honeypot that combines dynamic deception techniques with machine learning-based attack
classification. The framework consists of a simulated HTTPS server to engage with adversaries while a traffic collection
and feature extraction module gathers both metadata and encrypted communication patterns that are subsequently
analysed using supervised learning algorithms to identify brute-force, reconnaissance scans, and exploitation attacks in
real time. An adaptive response engine modifies the honeypot's hooking behaviour, including SSL/TLS certificates,
headers, open services, or simulated vulnerabilities, to maintain a longer contact time and make fingerprints harder. A
central ELK-based the dashboard gives an analyst the ability to constantly monitor, visualize, and assess forensic data to
make inform decisions. The alternative of dynamic transactions and scalable systems, provide resistance to the evolving
threats facing HTTPS. The adaptive method is applicable to enterprise networks, LANs, and IoT devices. In summary,
the contribution to design intelligent, adjusting, honeypots capable of detection and adaption modern methods used by

adversaries for exploitation.
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I. INTRODUCTION

Cyber threats encompass harmful activities aimed at
compromising the confidentiality, integrity, and availability
of information systems. These activities may involve multiple
actors, such as hackers working alone or in groups, criminal
organizations, hacktivists, or sponsored attackers. Such actors
take advantage of vulnerabilities to steal sensitive data, disrupt
systems and/or cause financial harm. Because these attacks
continue to evolve in their approach and technique, it is
difficult to remain resilient when addressing these evolving
threats. Governments can encounter threatening consequences
to their society and politics, while the private sectors including
finance, healthcare, and retail can find themselves targeted
with ransomware attacks, phishing attacks, and theft of
consumer data. As organizations increasingly depend on their
digital systems and the services that come with them, all of
that can be more secure if supported by a layered approach to
security, employee online safety training, monitoring, and
coordinated incident response. Communication and
collaboration between public/private stakeholders that support
critical infrastructure creates resilience through shared
intelligence and coordinated action.

Honeypots provide an active defense which is beyond what
current security tools will provide. A honeypot is a decoy
which replicates an asset, with the intention of luring an
attacker into a controlled environment where they can see the
behavior of the attack, identify vulnerabilities, and gather
threat intelligence — all while leaving real live systems
unaffected. Honeypots will provide insight into the Tactics,
Techniques, and Procedures (TTPs) of the attacker —

improving defenses against future threat events against the
organization. Honeypots may be useful for monitoring
unauthorized access to a public infrastructure or the

© 2025 IJRRA All Rights Reserved

enterprise, and they can also work in conjunction with
firewalls, intrusion detection systems and continuous
monitoring. Honeypots and other collected data can contribute
to feed machine learning models for predictive threat
detection and proactive security.

Traditional low-interaction honeypots provide services, or
open ports to trick attackers as they pose a very low risk to the
network. They passively collect intrusion attempts, IP
addresses, payloads and methods of attack. However, due to
their limitations, they provide little or no understanding of the
attacker’s behavior. Low interaction honeypots are easy to
implement and very well suited for lower resource
organizations or as initial deception layers in larger
organizational networks. They can be used to observe
automated attacks such as brute-force logins and being probed
or scanned other security activity. However, skilled attackers
may identify these honeypots and they will lose effectiveness,
particularly against advanced persistent threats (APTs).
Although less effective, low interaction honeypots can still
provide some level of early detection and awareness of threats.

Honeypots that rely on machine learning (ML) analyze live
traffic, commands, and payloads that help to uncover covert
techniques used by attackers. Supervised models will classify
known threats, unsupervised models will detect anomalies,
and reinforcement learning will adapt to the behavior of
attackers. The ML systems can automate threat intelligence,
improve the precision of detection, and reduce workloads on
human analysts. Some challenges for ML honeypots are
dependence on quality training data, vulnerability to
adversarial ML attacks, and the computational overhead
introduced. However, ML honeypots can more effectively
improve  defensive  capabilities  through  real-time
classifications of traffic inputs, dynamic deception of
malicious actors, and prioritization of alerts escalated by their
potential for risk.
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This research suggests an Adaptive Honeypot that merges
dynamic deception with ML classification. The honeypot
collects detailed information on network traffic and
interactions using Cowrie and Scapy to collect, the adaptive
engine changes ports, banners, file structures, and fake
vulnerabilities, ML then classifies the interactions into brute-
force, reconnaissance, privilege escalation, and exploit-type
attacks. The information is then output via ELK stack
visualization for real-time situational awareness, historical
analytical capture, and actionable intelligence. The
framework is identified as a scalable, intelligent, and self-
adapting defense capable of extending honeypot abilities and
enhancing resilience across government, enterprise, and cloud
environments.

II. LITERATURE REVIEW

Honeypots are decoy systems created to lure attackers so that
researchers are able to gather intelligence around emerging
threats without putting actual systems at risk. Honeypots
imitate vulnerable services and applications, so they can
provide research insight into attacker behavior within a
controlled environment. Successful, traditional honeypots can
identify unauthorized systems access and malware; however,
static honeypots typically lack effectiveness against adaptable
attacks or Al-based attacks, depending instead on mounted
defenses against scans to essentially obsolete malicious
behavior. There are trade-offs with specific types of
honeypots - low interaction honeypots have lower resource
requirements, but they do not provide much insight for
researchers; high interaction honeypots are real decoy systems
that create the perception of a vulnerable system but require
many operational resources and security measures for the
honeypot.

Modern cyber threats, such as advanced persistent threats
(APTs), polymorphic malware and zero-day exploits, are
increasingly sophisticated and able to defeat static
cybersecurity defenses. These kinds of attacks demand more
than static approaches, which is the premise behind the
establishment of honeypots that can modify their systems,
network responses, and interaction levels dynamically in
response to what the honeypot determines the attacker is
doing. Adaptive honeypots have, when applied with
approaches based on machine learning (ML) or artificial
intelligence (Al), has made possible continuous profiling of
attacker’s behavior in real time™, detecting anomalies,
classifying the types of attacks, and eventually predicting next
actions. They can also use multiple types of deception by
opening fake services, rotating ports, or simulate
vulnerabilities while pursuing adversaries or misdirecting
their interest. Continued engagement can both distract the
adversary from critical organizational assets while generating
cyber threat intelligence (CTI) for teams responsible for
security that can help enhance the effectiveness of Speed of
Incident Response, Threat Analysis and Proactive Defense
actions. In summary, adaptive honeypots offer a critical cyber
defense capability in building resilience to an ever-expanding
base of complex and evolving threats.
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The integration of continuous updates into a honeypot
environment can come from utilizing threat intelligence feeds,
both IoCs and adversarial tactical elements of both. The
deception framework of honeypots, or orchestrated deception
frameworks around honeypots, such as Cowrie, Dionaea, and
Honeyd, has been developed with fully orchestrated deception
frameworks to leverage the emulation of realistic services,
dynamic user interactions and automated intelligence capture
to augment awareness and defend an optimum cyber
environment.

Adaptive honeypots use different techniques: SDN-based
systems are adaptable at the network level, but rely on an
additional underlying layer. SDN-based systems can
introduce latency, or a single point of failure. ML-based
systems can make use of behavior intelligence, but require
increased computational resource and data sets, with reduced
risk from adversarial attacks. A hybrid system based on SDN
and ML approaches is multi-layered, adaptable, and has data
collection, detection reduction capability, and time-on-target
capability, but still require intensive computing to be
effective.

Deployments face challenges with scalability in extensive
networks, managing large volumes of interaction data,
changes to how attackers evade honeypots, and complexity of
integration. Other considerations include ethical, legal, and
privacy factors such as data ownership and GDPR compliance
which adds to the complexity of operations. All of this
highlights the need for lightweight, automated, and resilient
adaptive honeypot frameworks that effectively operate in
modern adversarial environments.

Although there has been progress made, modern adaptive
honeypots still have challenges such as semi-automated
adjustment, lagging real-time adjustments, limited coverage
of the threat landscape, reliance on high-quality data sets, and
usability concerns. The goal of this research is to inform a gap
in the literature by developing a self-evolving adaptive
honeypot that employs dynamic deception, real-time machine
learning-based threat classification, and automated behavioral
adaptation to provide a scalable and intelligent cyber defense
mechanism.

III. METHODOLOGY

This study adopts a modular, adaptive method to deploy a
honeypot modelled on HTTP traffic to capture event-level
activity on a local area network (LAN). Each implementation
goes through a process of analyzing every aspect of attacker-
based behavior, utilizing machine learning algorithms in the
detection of attacks, and adapting in real time to the response
procedure. The overall methodology is defined in five
sections: Traffic Collection, Data Preprocessing & Feature
Engineering, Machine Learning Algorithm Build, the
Adaptive Interaction Layer, and System Deployment and
Evaluation.

A. Traffic Collection

In the first phase, both controlled LAN environments and
synthetic attack scenarios collect HTTP request data. The
honeypot operates as a decoy web server that hosts fake but
realistic web applications designed to emulate common
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vulnerabilities to attract potential attackers. Every interaction,
including HTTP methods, headers, payloads, and client
metadata, is captured in real time. In order to further extend
the dataset and improve the model’s generalizability, extra
data from publicly available datasets like CICIDS and
UNSW-NBI5 are included. The traffic collected from both
environments includes a diverse array of both legitimate and
malicious HTTP requests that are used to train and validate
the detection model.

B. Data Preprocessing and Feature Engineering

After gathering the traffic data, it is processed and cleaned to
prepare it for machine learning. This includes removing
duplicates and incomplete packets, and deriving relevant
features from the HTTP session. Engineered features include
the following: the request frequency, the URL path length,
delay in response, payload size, and entropy. For supervised
learning, the data set is labeled with a combination of
automated rule detection (using IDS tools, such as Suricata or
Snort) and manually monitoring the packets. Each request is
labeled as benign or malicious to create a sufficiently robust
labeled dataset to train the classification model.

C. Machine Learning Model Construction

The labeled dataset is then used to develop a supervised
machine learning model that can classify HTTP traffic and
identify attack types. In other words, several algorithms (e.g.,
decision trees, random forests, and neural networks) are
evaluated to select the best model(s) created in terms of
accuracy, yet factoring in the computational cost as well. The
dataset is separated into training and testing data (sometimes
80:20 is used), and model performance is validated using
cross-validation methods. Finally, hyperparameter tuning is
performed to improve the model detection accuracy, and the
final model outputs a classification label and a probability
score on the confidence level of malicious activity (SQL
injection, XSS injection, brute force, etc.).

D. Adaptive Interaction Layer

The adaptive interaction engine is at the center of the system,
reacting to the output from the machine learning model in
order to modify the honeypot behavior. When it detects low-
risk or exploratory conduct, the system will continue to project
inaccurate but plausible content in order to gather more
actionable intelligence. When an attack is high confidence, the
system may deliberately impose artificial delays, present
misleading responses, or provoke the behavior response to
generate confusion and a deterrent effect.

Adaptive logic applies previous interaction feedback with the
intention of maturing over time. Upon observing attack
patterns, the honeypot model updates the behavior profile
which keeps the system robust and unpredictable towards
constantly evolving attack tactics.

E. System Architecture
The Adaptive HTTPS Honeypot has several interworking
components that dynamically interact to attract attackers and
gather intelligence. Its system architecture has the following
main modules:
e  Attacker Machine: Sends malicious HTTPS requests
to the Honeypot.
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e Honeypot Web Server: Simulates realistic HTTPS
services (login, admin, APIs) to attract attackers.

e Request Logger: Collects detailed information about
arriving requests (e.g., IP, payload).

e Feature Extractor: Processes the request data,
creating features such as request frequency and
payload size.

e ML Detection Engine: Classifies incoming traffic as
either benign or malicious using machine learning
algorithms.

e Adaptive Decision Engine: Dynamically alters the
Honeypot's actions (e.g., rotating ports, changing
certificates) based on the classification of the attack.

e Response Profile Manager: Switches between fake
service profiles to negatively impact attackers.

e Storage and Dashboard: Deploys the ELK stack to
provide real-time monitorization, logging, and
visualization of attacker behavior.

Figure 1 illustrates the data flow between these modules and
how each one cooperatively works to detect, engage, and react
to malicious activity in real-time.

Attacker
HTTP Request|

Honeypot | _____ ,| Feature
Web Server Extractor
T
Request:
Log !
v
Request Adaptive Stog(age
Logger Decision
: Engine Dashboard
Switch :
Profile |
h 4
Response ML Detector Adaptive
Profile Decision
Manager Engine LAN
Fig. 1. System architecture of the Adaptive HTTPS
Honeypot

F. Deployment and Performance Evaluation

The last stage consists of deploying the honeypot into a local
area network (LAN) environment and evaluating its
operational performance. The system is running in a virtual
machine or in a containerized platform to promote isolation
and ease of management. During the deployment, the
honeypot will go through various simulated attacks with
penetration tools to examine its detection capabilities, and
where applicable its adaptability. Performance metrics are
monitored including accuracy, false positive rate, system
responsiveness and resource usage. The machine learning
model is retrained with new interaction data on a regular basis
in order to maintain quality detection, and adapt and respond
to new attack techniques.

The methodology we put forth consolidates machine learning,
dynamic deception, and real-time interaction tracking together
in a common framework. The system will have the ability to
detect future threats, re-evaluate its action, and recall forensic
information with minimal human involvement. This dynamic
honeypot model represents a fundamental transition in the
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pursuit of a construction of intelligent autonomous defenses
in a LAN environment.

IV. Experimental Results and Discussion

The designed Adaptive HTTPS Honeypot was deployed and
assessed in a controlled network environment to assess the
system's capability to detect, classify, and adapt to various
encrypted web-based attacks. The goal of the experiments was
to evaluate the performance of the system with respect to
detection accuracy, adaptability, and resource usage through a
series of varying HTTPS-based attack conditions.

A. Experimental Setup

The adaptive HTTPS honeypot was assessed in a controlled
LAN testbed that contained one honeypot host, three nodes for
attacker-emulation, and one monitoring workstation. The
honeypot hosted in a Docker container using Ubuntu 22.04
and exposed multiple HTTPS endpoints (login, admin, API)
that generated TLS certificates dynamically. The logging and
visualization were processed using the ELK stack
(Elasticsearch, Logstash, and Kibana). Attack traffic was
generated by using standard applications and scripted clients
for representative sessions of reconnaissance scans
(Nikto/gobuster), brute force logins (Hydra), and payload-
based exploration (sqlmap-type queries). The experimental
corpus is 6,000 HTTPS sessions collected over multiple
iterations that consists of 1,500 categorized as malicious
(25%) and 4,500 benign. For ML, the Random Forest
classifier was trained on features based on metadata and
encrypted-traffic patterns (request rate, TLS fingerprint
variations and inconsistencies, header anomalies, and payload
entropy proxies). The data were split between training and test
to an 80:20 ratio and hyperparameters were tuned using 5-fold
cross-validation on the training dataset.

B. Detection and Classification Results
The system demonstrated high classification accuracy on the
held-out test data. The aggregate metrics are:

Accuracy: 95.2%

Precision: 94.1%

Recall (detection rate): 96.3%
F1 Score: 95.2%

False Positive Rate (FPR): 3.9%
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Fig 2: Performance metrics (Accuracy, Precision, Recall, F1-
Score) of the Adaptive HTTPS Honeypot.

Confusion-matrix counts (test partition scaled to full
experiment proportions) are about:
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Fig 3: Confusion matrix showing classification results for
malicious and benign HTTPS traffic.

The data demonstrates a strong true positive yield alongside a
low number of false positives- a good trade-off for a research
honeypot that is focused on intelligence collection rather than
preventing production traffic.

C. Adaptive Effectiveness Engagement
One of the central objectives of our work was to determine
whether adaptive deception resulted in additional attacker
engagement and better telemetry. Under a static honeypot
control (same endpoints but with no behavioral switching), the
adaptive engine produced:
e Median session duration (static): 1.6 minutes
e Median duration of sessions (adaptive): 2.7
minutes; approximately ~69% increase
e Mean number of distinct attacker actions per
session (e.g., scans, form attempts, payload
submissions) increased approximately ~55% on
average, which signals deeper engagement
before attackers abandoned the session.
Typically, the adaptive engine switched profiles (i.e., Landing
page — fake admin — simulated vulnerable API) based on
detected behavior. The median adaptation latency of a new
profile being active (detection until new profile active) was
1.8 seconds, with a 95th percentile adaptation latency (same
host, under test load) of 4.5 seconds. These latencies are also
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small enough to allow for near real-time deception, while
keeping processing lightweight on the honeypot host.

D. Resource Usage and Operational Observations

In keeping the configuration up with non-threatening
background traffic and occasional bursts of attack, the
honeypot container averaged approximately 12% utilization
of CPU (on a 4-core host) and around 420 MB utilization of
RAM. While this utilization spiked every now and then from
model inference and feature extraction, these did not lead to
saturation of the host in our configuration. In terms of log
storage, utilization grew approximately at a rate of 120 MB
per 1,000 sessions (full metadata retained and payloads
truncated) but could remain bounded with retention policies
and rotation of logs.[24][25][26]

E. Limitations and Threats to validity

The findings are encouraging, but there are caveats. The attack
methodologies used in the study were figured from synthetic,
tool-based attacks, in a LAN testbed; it is conceivable that
real-world, motivation attackers may deploy different types of
adversarial evasion methodologies when attacking the
network, thereby impacting the detection methods ability to
perform. The performance of the ML model is directly
dependent on the representativeness of the training data;
biases in the training data might introduce other levels of false
negatives outside of the testbed. Lastly, the resource numbers
cited were specific to the hardware used in the testbed and for
the container in which the model was running; the resource
numbers cited would probably need to be scaled horizontally
and/or dedicated analysis nodes could be utilized if the model
were deployed at a larger scale.[27][28]

F. Summary

The results for the Adaptive HTTPS Honeypot demonstrated
very high detection accuracy (95%), a low false positive rate
(4%, and significant increases in attacker engagement (69%
longer sessions) when compared to a static baseline. The
honeypot's quick adaptation time (1.8 seconds median) and
low resource usage demonstrate pragmatic feasibility for
various deployments including LAN devices and lab settings,
however, further validation and stress testing in fielded and
larger deployed settings is highly recommended before
production usage.

V. RESULTS AND DISCUSSION

The Adaptive HTTPS Honeypot was evaluated in a
conditional LAN environment employing simulated attacks
including brute-force logins, reconnaissance type scans, and
injection type attacks. It successfully interacted with the
interested attackers through convincing HTTPS interfaces
while also capturing data of useful interaction for later
analysis. The system performance was evaluated using
Accuracy, Precision, Recall, and FI1-Score metrics. The
classifier demonstrated an accuracy of 95.2%, which indicated
that it was effective in separating legitimate traffic from
malicious. Precision (94.1%) and Recall (96.3%)
demonstrated it was able to detect malicious acting in
accordance with reduced false positives. An F1-Score of
95.2% confirmed balanced classification performance was
achieved.
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In the confusion matrix (Fig. 6), results demonstrated strong
classification results, as there were high true positives and true
negatives, thus indicating accurate detection. Finally, the
adaptive  deception mechanisms (dynamic SSL/TLS
certificates, simulated vulnerabilities) allowed adversaries to
engage with the decoy longer, thereby supporting a better
analysis of adversaries' strategies. The honeypot's adaptive
deception features greatly improved attacker engagement
time. Once it detected a high-confidence attack pattern, the
honeypot would automatically adjust its fake services, rotate
ports, and alter headers to make it more difficult for the
attacker to deduce that the honeypot was a fake service. This
adaptive behavior achieved two desired goals—extending the
time of engagement and increasing intelligence collected on
new attack vectors. The expected machine-learning capability
of the system that learns from interactions makes it a strong
defender against Advanced Persistent Threats
(APTSs).[29][30]

A custom monitoring dashboard was developed to visualize
the real-time performance and behavior of the Adaptive
HTTPS Honeypot. As shown in Fig. 4, the dashboard provides
an integrated view of key metrics, including the number of
detected attacks, their severity levels, source distribution, and
system adaptation responses. The interface employs color-
coded visualizations and dynamic graphs to represent time-
based attack trends, enabling researchers to quickly assess
network threats and honeypot performance. This visualization
tool proved instrumental during testing, allowing continuous
observation of attacker interactions, validating adaptive
response triggers, and confirming the efficiency of the ML-
driven detection model. The dashboard thus enhances
operational transparency, supports rapid threat assessment,
and demonstrates the practical applicability of the adaptive
honeypot in real-world environments.[31][32][33]

Adaptive HTTPS Honeypot

Metrics Alerts

99 Alerts Critical

40 Ac High -

Medium

Alert Sources Activity Over Time

12

Fig. 4. Dashboard visualization of the Adaptive HTTPS
Honeypot showing real-time attack metrics, source
distribution, and adaptive response activity.

Scope and Future Work: Although the proposed system
demonstrated positive results in a controlled LAN
environment, several areas exist for future development. One
main area of focus will be a focus on scaling the framework
into operational enterprise and cloud networks, especially
networks with complex network topologies such as IoT
devices and industrial control systems. Adding external threat

page - 29-



Snecha Mishra al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: International Conference
on Intelligent Systems for Complex, Chaotic, & Connected Environments Sept 2025, pp. 25-31

intelligence feeds will allow the honeypot to be reconfigured
and redesigned based on newly observed attack techniques.
Future improvements should focus on improving the machine
learning models to include approaches for previously unseen
attack types. Moreover, improvements should also be made to
improve the computational overhead of the adaptive response
engine as well as its resilience against adversarial ML attacks.
Future work will explore the possibilities of horizontal scaling
for larger scale deployments in an enterprise context.

This paper introduces an Adaptive HTTPS Honeypot that
employs machine learning-based detection paired with
dynamic deception methods to improve cybersecurity. The
system achieved a high detection accuracy rate (95.2%) and
low false positives (3.9%) in simulated scenarios of attack.
The system extended the engagement time with attackers by
adapting in real-time to the patterns of detected attacks,
providing significant intelligence and improving its defenses
against advanced cyber-attacks.

This study shows the potential of using a combination of
machine learning and adaptive deception to act in a proactive
manner in the context of cybersecurity. Adaptive honeypots
are an answer for dealing with scalability and intelligence in
order to respond to the challenges of growing, complex, cyber
threats. Adaptive honeypots are proving to be an emerging,
significant defensive solution as the landscape of cyber threats
change and evolve.
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