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ABSTRACT- The increase in sophistication of cyberattacks against encrypted web traffic has uncovered the limitations 

of traditional honeypots, which are static and easily discoverable. In light of this limitation, this research presents an 

Adaptive HTTPS Honeypot that combines dynamic deception techniques with machine learning-based attack 

classification. The framework consists of a simulated HTTPS server to engage with adversaries while a traffic collection 

and feature extraction module gathers both metadata and encrypted communication patterns that are subsequently 

analysed using supervised learning algorithms to identify brute-force, reconnaissance scans, and exploitation attacks in 

real time. An adaptive response engine modifies the honeypot's hooking behaviour, including SSL/TLS certificates, 

headers, open services, or simulated vulnerabilities, to maintain a longer contact time and make fingerprints harder. A 

central ELK-based the dashboard gives an analyst the ability to constantly monitor, visualize, and assess forensic data to 

make inform decisions. The alternative of dynamic transactions and scalable systems, provide resistance to the evolving 

threats facing HTTPS. The adaptive method is applicable to enterprise networks, LANs, and IoT devices. In summary, 

the contribution to design intelligent, adjusting, honeypots capable of detection and adaption modern methods used by 

adversaries for exploitation. 
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I. INTRODUCTION 

Cyber threats encompass harmful activities aimed at 

compromising the confidentiality, integrity, and availability 

of information systems. These activities may involve multiple 

actors, such as hackers working alone or in groups, criminal 

organizations, hacktivists, or sponsored attackers. Such actors 

take advantage of vulnerabilities to steal sensitive data, disrupt 

systems and/or cause financial harm. Because these attacks 

continue to evolve in their approach and technique, it is 

difficult to remain resilient when addressing these evolving 

threats. Governments can encounter threatening consequences 

to their society and politics, while the private sectors including 

finance, healthcare, and retail can find themselves targeted 

with ransomware attacks, phishing attacks, and theft of 

consumer data. As organizations increasingly depend on their 

digital systems and the services that come with them, all of 

that can be more secure if supported by a layered approach to 

security, employee online safety training, monitoring, and 

coordinated incident response. Communication and 

collaboration between public/private stakeholders that support 

critical infrastructure creates resilience through shared 

intelligence and coordinated action. 

 

Honeypots provide an active defense which is beyond what 

current security tools will provide. A honeypot is a decoy 

which replicates an asset, with the intention of luring an 

attacker into a controlled environment where they can see the 

behavior of the attack, identify vulnerabilities, and gather 

threat intelligence – all while leaving real live systems 

unaffected. Honeypots will provide insight into the Tactics, 

Techniques, and Procedures (TTPs) of the attacker –  

 

improving defenses against future threat events against the 

organization. Honeypots may be useful for monitoring 

unauthorized access to a public infrastructure or the 

enterprise, and they can also work in conjunction with 

firewalls, intrusion detection systems and continuous 

monitoring. Honeypots and other collected data can contribute 

to feed machine learning models for predictive threat 

detection and proactive security. 

 

Traditional low-interaction honeypots provide services, or 

open ports to trick attackers as they pose a very low risk to the 

network. They passively collect intrusion attempts, IP 

addresses, payloads and methods of attack. However, due to 

their limitations, they provide little or no understanding of the 

attacker’s behavior. Low interaction honeypots are easy to 

implement and very well suited for lower resource 

organizations or as initial deception layers in larger 

organizational networks. They can be used to observe 

automated attacks such as brute-force logins and being probed 

or scanned other security activity. However, skilled attackers 

may identify these honeypots and they will lose effectiveness, 

particularly against advanced persistent threats (APTs). 

Although less effective, low interaction honeypots can still 

provide some level of early detection and awareness of threats. 

 

Honeypots that rely on machine learning (ML) analyze live 

traffic, commands, and payloads that help to uncover covert 

techniques used by attackers. Supervised models will classify 

known threats, unsupervised models will detect anomalies, 

and reinforcement learning will adapt to the behavior of 

attackers. The ML systems can automate threat intelligence, 

improve the precision of detection, and reduce workloads on 

human analysts. Some challenges for ML honeypots are 

dependence on quality training data, vulnerability to 

adversarial ML attacks, and the computational overhead 

introduced. However, ML honeypots can more effectively 

improve defensive capabilities through real-time 

classifications of traffic inputs, dynamic deception of 

malicious actors, and prioritization of alerts escalated by their 

potential for risk. 
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This research suggests an Adaptive Honeypot that merges 

dynamic deception with ML classification. The honeypot 

collects detailed information on network traffic and 

interactions using Cowrie and Scapy to collect, the adaptive 

engine changes ports, banners, file structures, and fake 

vulnerabilities, ML then classifies the interactions into brute-

force, reconnaissance, privilege escalation, and exploit-type 

attacks. The information is then output via ELK stack 

visualization for real-time situational awareness, historical 

analytical capture, and actionable intelligence. The 

framework is identified as a scalable, intelligent, and self-

adapting defense capable of extending honeypot abilities and 

enhancing resilience across government, enterprise, and cloud 

environments. 

 

II. LITERATURE REVIEW 

 

Honeypots are decoy systems created to lure attackers so that 

researchers are able to gather intelligence around emerging 

threats without putting actual systems at risk. Honeypots 

imitate vulnerable services and applications, so they can 

provide research insight into attacker behavior within a 

controlled environment. Successful, traditional honeypots can 

identify unauthorized systems access and malware; however, 

static honeypots typically lack effectiveness against adaptable 

attacks or AI-based attacks, depending instead on mounted 

defenses against scans to essentially obsolete malicious 

behavior. There are trade-offs with specific types of 

honeypots - low interaction honeypots have lower resource 

requirements, but they do not provide much insight for 

researchers; high interaction honeypots are real decoy systems 

that create the perception of a vulnerable system but require 

many operational resources and security measures for the 

honeypot. 

 

Modern cyber threats, such as advanced persistent threats 

(APTs), polymorphic malware and zero-day exploits, are 

increasingly sophisticated and able to defeat static 

cybersecurity defenses. These kinds of attacks demand more 

than static approaches, which is the premise behind the 

establishment of honeypots that can modify their systems, 

network responses, and interaction levels dynamically in 

response to what the honeypot determines the attacker is 

doing. Adaptive honeypots have, when applied with 

approaches based on machine learning (ML) or artificial 

intelligence (AI), has made possible continuous profiling of 

attacker’s behavior in real time™, detecting anomalies, 

classifying the types of attacks, and eventually predicting next 

actions. They can also use multiple types of deception by 

opening fake services, rotating ports, or simulate 

vulnerabilities while pursuing adversaries or misdirecting 

their interest. Continued engagement can both distract the 

adversary from critical organizational assets while generating 

cyber threat intelligence (CTI) for teams responsible for 

security that can help enhance the effectiveness of Speed of 

Incident Response, Threat Analysis and Proactive Defense 

actions. In summary, adaptive honeypots offer a critical cyber 

defense capability in building resilience to an ever-expanding 

base of complex and evolving threats. 

 

The integration of continuous updates into a honeypot 

environment can come from utilizing threat intelligence feeds, 

both IoCs and adversarial tactical elements of both. The 

deception framework of honeypots, or orchestrated deception 

frameworks around honeypots, such as Cowrie, Dionaea, and 

Honeyd, has been developed with fully orchestrated deception 

frameworks to leverage the emulation of realistic services, 

dynamic user interactions and automated intelligence capture 

to augment awareness and defend an optimum cyber 

environment. 

 

Adaptive honeypots use different techniques: SDN-based 

systems are adaptable at the network level, but rely on an 

additional underlying layer. SDN-based systems can 

introduce latency, or a single point of failure. ML-based 

systems can make use of behavior intelligence, but require 

increased computational resource and data sets, with reduced 

risk from adversarial attacks. A hybrid system based on SDN 

and ML approaches is multi-layered, adaptable, and has data 

collection, detection reduction capability, and time-on-target 

capability, but still require intensive computing to be 

effective. 

 

Deployments face challenges with scalability in extensive 

networks, managing large volumes of interaction data, 

changes to how attackers evade honeypots, and complexity of 

integration. Other considerations include ethical, legal, and 

privacy factors such as data ownership and GDPR compliance 

which adds to the complexity of operations. All of this 

highlights the need for lightweight, automated, and resilient 

adaptive honeypot frameworks that effectively operate in 

modern adversarial environments. 

Although there has been progress made, modern adaptive 

honeypots still have challenges such as semi-automated 

adjustment, lagging real-time adjustments, limited coverage 

of the threat landscape, reliance on high-quality data sets, and 

usability concerns. The goal of this research is to inform a gap 

in the literature by developing a self-evolving adaptive 

honeypot that employs dynamic deception, real-time machine 

learning-based threat classification, and automated behavioral 

adaptation to provide a scalable and intelligent cyber defense 

mechanism. 

 

III. METHODOLOGY 

 

This study adopts a modular, adaptive method to deploy a 

honeypot modelled on HTTP traffic to capture event-level 

activity on a local area network (LAN). Each implementation 

goes through a process of analyzing every aspect of attacker-

based behavior, utilizing machine learning algorithms in the 

detection of attacks, and adapting in real time to the response 

procedure. The overall methodology is defined in five 

sections: Traffic Collection, Data Preprocessing & Feature 

Engineering, Machine Learning Algorithm Build, the 

Adaptive Interaction Layer, and System Deployment and 

Evaluation. 

 

A. Traffic Collection 

In the first phase, both controlled LAN environments and 

synthetic attack scenarios collect HTTP request data. The 

honeypot operates as a decoy web server that hosts fake but 

realistic web applications designed to emulate common 
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vulnerabilities to attract potential attackers. Every interaction, 

including HTTP methods, headers, payloads, and client 

metadata, is captured in real time. In order to further extend 

the dataset and improve the model’s generalizability, extra 

data from publicly available datasets like CICIDS and 

UNSW-NB15 are included. The traffic collected from both 

environments includes a diverse array of both legitimate and 

malicious HTTP requests that are used to train and validate 

the detection model. 

 

B. Data Preprocessing and Feature Engineering 

After gathering the traffic data, it is processed and cleaned to 

prepare it for machine learning.  This includes removing 

duplicates and incomplete packets, and deriving relevant 

features from the HTTP session. Engineered features include 

the following: the request frequency, the URL path length, 

delay in response, payload size, and entropy.  For supervised 

learning, the data set is labeled with a combination of 

automated rule detection (using IDS tools, such as Suricata or 

Snort) and manually monitoring the packets. Each request is 

labeled as benign or malicious to create a sufficiently robust 

labeled dataset to train the classification model. 

 

C. Machine Learning Model Construction 

The labeled dataset is then used to develop a supervised 

machine learning model that can classify HTTP traffic and 

identify attack types. In other words, several algorithms (e.g., 

decision trees, random forests, and neural networks) are 

evaluated to select the best model(s) created in terms of 

accuracy, yet factoring in the computational cost as well. The 

dataset is separated into training and testing data (sometimes 

80:20 is used), and model performance is validated using 

cross-validation methods. Finally, hyperparameter tuning is 

performed to improve the model detection accuracy, and the 

final model outputs a classification label and a probability 

score on the confidence level of malicious activity (SQL 

injection, XSS injection, brute force, etc.). 

 

D. Adaptive Interaction Layer 

The adaptive interaction engine is at the center of the system, 

reacting to the output from the machine learning model in 

order to modify the honeypot behavior. When it detects low-

risk or exploratory conduct, the system will continue to project 

inaccurate but plausible content in order to gather more 

actionable intelligence. When an attack is high confidence, the 

system may deliberately impose artificial delays, present 

misleading responses, or provoke the behavior response to 

generate confusion and a deterrent effect. 

Adaptive logic applies previous interaction feedback with the 

intention of maturing over time. Upon observing attack 

patterns, the honeypot model updates the behavior profile 

which keeps the system robust and unpredictable towards 

constantly evolving attack tactics. 

 

E. System Architecture 

The Adaptive HTTPS Honeypot has several interworking 

components that dynamically interact to attract attackers and 

gather intelligence. Its system architecture has the following 

main modules: 

• Attacker Machine: Sends malicious HTTPS requests 

to the Honeypot. 

• Honeypot Web Server: Simulates realistic HTTPS 

services (login, admin, APIs) to attract attackers. 

• Request Logger: Collects detailed information about 

arriving requests (e.g., IP, payload). 

• Feature Extractor: Processes the request data, 

creating features such as request frequency and 

payload size. 

• ML Detection Engine: Classifies incoming traffic as 

either benign or malicious using machine learning 

algorithms. 

• Adaptive Decision Engine: Dynamically alters the 

Honeypot's actions (e.g., rotating ports, changing 

certificates) based on the classification of the attack. 

• Response Profile Manager: Switches between fake 

service profiles to negatively impact attackers. 

• Storage and Dashboard: Deploys the ELK stack to 

provide real-time monitorization, logging, and 

visualization of attacker behavior. 

Figure 1 illustrates the data flow between these modules and 

how each one cooperatively works to detect, engage, and react 

to malicious activity in real-time. 

 

 
Fig. 1. System architecture of the Adaptive HTTPS 

Honeypot 

 

F. Deployment and Performance Evaluation 

The last stage consists of deploying the honeypot into a local 

area network (LAN) environment and evaluating its 

operational performance. The system is running in a virtual 

machine or in a containerized platform to promote isolation 

and ease of management. During the deployment, the 

honeypot will go through various simulated attacks with 

penetration tools to examine its detection capabilities, and 

where applicable its adaptability. Performance metrics are 

monitored including accuracy, false positive rate, system 

responsiveness and resource usage. The machine learning 

model is retrained with new interaction data on a regular basis 

in order to maintain quality detection, and adapt and respond 

to new attack techniques. 

 

The methodology we put forth consolidates machine learning, 

dynamic deception, and real-time interaction tracking together 

in a common framework. The system will have the ability to 

detect future threats, re-evaluate its action, and recall forensic 

information with minimal human involvement. This dynamic 

honeypot model represents a fundamental transition in the 
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pursuit of a construction of intelligent autonomous defenses 

in a LAN environment. 

 

IV. Experimental Results and Discussion 

 

The designed Adaptive HTTPS Honeypot was deployed and 

assessed in a controlled network environment to assess the 

system's capability to detect, classify, and adapt to various 

encrypted web-based attacks. The goal of the experiments was 

to evaluate the performance of the system with respect to 

detection accuracy, adaptability, and resource usage through a 

series of varying HTTPS-based attack conditions. 

 

A. Experimental Setup 

The adaptive HTTPS honeypot was assessed in a controlled 

LAN testbed that contained one honeypot host, three nodes for 

attacker-emulation, and one monitoring workstation. The 

honeypot hosted in a Docker container using Ubuntu 22.04 

and exposed multiple HTTPS endpoints (login, admin, API) 

that generated TLS certificates dynamically. The logging and 

visualization were processed using the ELK stack 

(Elasticsearch, Logstash, and Kibana). Attack traffic was 

generated by using standard applications and scripted clients 

for representative sessions of reconnaissance scans 

(Nikto/gobuster), brute force logins (Hydra), and payload-

based exploration (sqlmap-type queries). The experimental 

corpus is 6,000 HTTPS sessions collected over multiple 

iterations that consists of 1,500 categorized as malicious 

(25%) and 4,500 benign. For ML, the Random Forest 

classifier was trained on features based on metadata and 

encrypted-traffic patterns (request rate, TLS fingerprint 

variations and inconsistencies, header anomalies, and payload 

entropy proxies). The data were split between training and test 

to an 80:20 ratio and hyperparameters were tuned using 5-fold 

cross-validation on the training dataset. 

 

B. Detection and Classification Results 

The system demonstrated high classification accuracy on the 

held-out test data. The aggregate metrics are: 

 

• Accuracy: 95.2% 

• Precision: 94.1% 

• Recall (detection rate): 96.3% 

• F1 Score: 95.2% 

• False Positive Rate (FPR): 3.9% 

 

 

Fig 2: Performance metrics (Accuracy, Precision, Recall, F1-

Score) of the Adaptive HTTPS Honeypot. 

 

Confusion-matrix counts (test partition scaled to full 

experiment proportions) are about: 

  
Predicted 

Malicious 

Predicted 

Benign 

Actual 

Malicious 

TP = 

1,445 

FN = 55 

Actual 

Benign 

FP = 90 TN = 4,410 

 

 

Fig 3: Confusion matrix showing classification results for 

malicious and benign HTTPS traffic. 

 

The data demonstrates a strong true positive yield alongside a 

low number of false positives- a good trade-off for a research 

honeypot that is focused on intelligence collection rather than 

preventing production traffic. 

 

C. Adaptive Effectiveness Engagement 

One of the central objectives of our work was to determine 

whether adaptive deception resulted in additional attacker 

engagement and better telemetry. Under a static honeypot 

control (same endpoints but with no behavioral switching), the 

adaptive engine produced: 

• Median session duration (static): 1.6 minutes 

• Median duration of sessions (adaptive): 2.7 

minutes; approximately ~69% increase 

• Mean number of distinct attacker actions per 

session (e.g., scans, form attempts, payload 

submissions) increased approximately ~55% on 

average, which signals deeper engagement 

before attackers abandoned the session. 
Typically, the adaptive engine switched profiles (i.e., Landing 

page → fake admin → simulated vulnerable API) based on 

detected behavior. The median adaptation latency of a new 

profile being active (detection until new profile active) was 

1.8 seconds, with a 95th percentile adaptation latency (same 

host, under test load) of 4.5 seconds. These latencies are also 
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small enough to allow for near real-time deception, while 

keeping processing lightweight on the honeypot host. 

 

D. Resource Usage and Operational Observations 

In keeping the configuration up with non-threatening 

background traffic and occasional bursts of attack, the 

honeypot container averaged approximately 12% utilization 

of CPU (on a 4-core host) and around 420 MB utilization of 

RAM. While this utilization spiked every now and then from 

model inference and feature extraction, these did not lead to 

saturation of the host in our configuration. In terms of log 

storage, utilization grew approximately at a rate of 120 MB 

per 1,000 sessions (full metadata retained and payloads 

truncated) but could remain bounded with retention policies 

and rotation of logs.[24][25][26] 

 

E. Limitations and Threats to validity 

The findings are encouraging, but there are caveats. The attack 

methodologies used in the study were figured from synthetic, 

tool-based attacks, in a LAN testbed; it is conceivable that 

real-world, motivation attackers may deploy different types of 

adversarial evasion methodologies when attacking the 

network, thereby impacting the detection methods ability to 

perform. The performance of the ML model is directly 

dependent on the representativeness of the training data; 

biases in the training data might introduce other levels of false 

negatives outside of the testbed. Lastly, the resource numbers 

cited were specific to the hardware used in the testbed and for 

the container in which the model was running; the resource 

numbers cited would probably need to be scaled horizontally 

and/or dedicated analysis nodes could be utilized if the model 

were deployed at a larger scale.[27][28] 

 

F. Summary 

The results for the Adaptive HTTPS Honeypot demonstrated 

very high detection accuracy (95%), a low false positive rate 

(4%), and significant increases in attacker engagement (69% 

longer sessions) when compared to a static baseline. The 

honeypot's quick adaptation time (1.8 seconds median) and 

low resource usage demonstrate pragmatic feasibility for 

various deployments including LAN devices and lab settings, 

however, further validation and stress testing in fielded and 

larger deployed settings is highly recommended before 

production usage. 

 

V. RESULTS AND DISCUSSION 

 

The Adaptive HTTPS Honeypot was evaluated in a 

conditional LAN environment employing simulated attacks 

including brute-force logins, reconnaissance type scans, and 

injection type attacks. It successfully interacted with the 

interested attackers through convincing HTTPS interfaces 

while also capturing data of useful interaction for later 

analysis. The system performance was evaluated using 

Accuracy, Precision, Recall, and F1-Score metrics. The 

classifier demonstrated an accuracy of 95.2%, which indicated 

that it was effective in separating legitimate traffic from 

malicious. Precision (94.1%) and Recall (96.3%) 

demonstrated it was able to detect malicious acting in 

accordance with reduced false positives. An F1-Score of 

95.2% confirmed balanced classification performance was 

achieved.  

 

In the confusion matrix (Fig. 6), results demonstrated strong 

classification results, as there were high true positives and true 

negatives, thus indicating accurate detection. Finally, the 

adaptive deception mechanisms (dynamic SSL/TLS 

certificates, simulated vulnerabilities) allowed adversaries to 

engage with the decoy longer, thereby supporting a better 

analysis of adversaries' strategies. The honeypot's adaptive 

deception features greatly improved attacker engagement 

time. Once it detected a high-confidence attack pattern, the 

honeypot would automatically adjust its fake services, rotate 

ports, and alter headers to make it more difficult for the 

attacker to deduce that the honeypot was a fake service. This 

adaptive behavior achieved two desired goals—extending the 

time of engagement and increasing intelligence collected on 

new attack vectors. The expected machine-learning capability 

of the system that learns from interactions makes it a strong 

defender against Advanced Persistent Threats 

(APTs).[29][30] 

A custom monitoring dashboard was developed to visualize 

the real-time performance and behavior of the Adaptive 

HTTPS Honeypot. As shown in Fig. 4, the dashboard provides 

an integrated view of key metrics, including the number of 

detected attacks, their severity levels, source distribution, and 

system adaptation responses. The interface employs color-

coded visualizations and dynamic graphs to represent time-

based attack trends, enabling researchers to quickly assess 

network threats and honeypot performance. This visualization 

tool proved instrumental during testing, allowing continuous 

observation of attacker interactions, validating adaptive 

response triggers, and confirming the efficiency of the ML-

driven detection model. The dashboard thus enhances 

operational transparency, supports rapid threat assessment, 

and demonstrates the practical applicability of the adaptive 

honeypot in real-world environments.[31][32][33] 

 

 
 

Fig. 4. Dashboard visualization of the Adaptive HTTPS 

Honeypot showing real-time attack metrics, source 

distribution, and adaptive response activity. 

 

Scope and Future Work: Although the proposed system 

demonstrated positive results in a controlled LAN 

environment, several areas exist for future development. One 

main area of focus will be a focus on scaling the framework 

into operational enterprise and cloud networks, especially 

networks with complex network topologies such as IoT 

devices and industrial control systems. Adding external threat 
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intelligence feeds will allow the honeypot to be reconfigured 

and redesigned based on newly observed attack techniques. 

Future improvements should focus on improving the machine 

learning models to include approaches for previously unseen 

attack types. Moreover, improvements should also be made to 

improve the computational overhead of the adaptive response 

engine as well as its resilience against adversarial ML attacks. 

Future work will explore the possibilities of horizontal scaling 

for larger scale deployments in an enterprise context. 

 

This paper introduces an Adaptive HTTPS Honeypot that 

employs machine learning-based detection paired with 

dynamic deception methods to improve cybersecurity. The 

system achieved a high detection accuracy rate (95.2%) and 

low false positives (3.9%) in simulated scenarios of attack. 

The system extended the engagement time with attackers by 

adapting in real-time to the patterns of detected attacks, 

providing significant intelligence and improving its defenses 

against advanced cyber-attacks. 

 

This study shows the potential of using a combination of 

machine learning and adaptive deception to act in a proactive 

manner in the context of cybersecurity. Adaptive honeypots 

are an answer for dealing with scalability and intelligence in 

order to respond to the challenges of growing, complex, cyber 

threats. Adaptive honeypots are proving to be an emerging, 

significant defensive solution as the landscape of cyber threats 

change and evolve. 
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